zoukankan      html  css  js  c++  java
  • Halcon深度学习——奇异值检测

    该方法属于无监督式的深度学习方法,优点:

      1 无需标注

      2 只训练正样本

      3 可以在CPU下进行训练

      4 具有较快的推断速度

    适用场景:适合缺陷较为明显的项目

    注意:设置的ImageWidth、ImageHeight ,以及自己采的图,尽量是32的倍数

    精确率和召回率说明

     

    召回率(recall) == 92.1%,意味着ok图中7.9%被预测为ng
    精确率(precision) =79.8%,意味着被认为是ok的图中有20.2%的ng图,即ng容易被检测成ok

     主对角线数值越大越好,副对角线数值越小越好。47个OK被误判为ng,3个ng被误判为OK

    dev_update_off ()
    dev_close_window ()
    set_system ('seed_rand', 25)
    * 
    * 
    *----------------------------- 0.) 样本、保存模型路径 -----------------------*
    * 
    * 训练只需ok文件夹,其他文件夹用于之后的评估
    * 
    * 路径及子文件夹名
    ImageDir := 'E:/整条'
    ImageSubDirs := ['ok','ng']
    * 
    * 缺陷区域的二值图路径(无)
    AnomalyDir := []
    * 
    * 所有样本预处理后的保存路径
    OutputDir := ImageDir+'/anomaly_output_data'
    * 模型的保存路径+模型名
    ModelFileFullName := ImageDir+'/model_final.hdl' 
    * ********************** 自己需要设定的值 ****************** *
    * 数据集特定的预处理
    ExampleSpecificPreprocessing := true
    * 缩放后的大小(32的倍数)
    ImageWidth := 320
    ImageHeight := 320
    * 复杂度,越大准确率越高,训练越耗时
    Complexity := 15
    * Complexity := 30
    * 
    *----------------------------- 1.) 读取、拆分样本集 DLDataset -----------------------*
    create_dict (GenParamDataset)
    set_dict_tuple (GenParamDataset, 'image_sub_dirs', ImageSubDirs)
    read_dl_dataset_anomaly (ImageDir, AnomalyDir, [], [], GenParamDataset, DLDataset)
    * 拆分样本集为训练集(60%)、验证集(20%)、测试集(剩余的20%)
    split_dl_dataset (DLDataset, 60, 20, [])
    * 
    * 加载预训练模型、设置参数
    read_dl_model ('initial_dl_anomaly_medium.hdl', DLModelHandle)
    *read_dl_model ('initial_dl_anomaly_large.hdl', DLModelHandle)
    set_dl_model_param (DLModelHandle, 'image_width', ImageWidth)
    set_dl_model_param (DLModelHandle, 'image_height', ImageHeight)
    set_dl_model_param (DLModelHandle, 'complexity', Complexity)
    *set_dl_model_param (DLModelHandle, 'runtime', 'cpu')
    set_dl_model_param (DLModelHandle, 'runtime', 'gpu')
    set_dl_model_param (DLModelHandle, 'runtime_init', 'immediately')
    * 设置预处理参数,并进行预处理
    create_dict (PreprocessSettings)
    set_dict_tuple (PreprocessSettings, 'overwrite_files', true)
    create_dl_preprocess_param ('anomaly_detection', ImageWidth, ImageHeight, 3, [], [], 'constant_values', 'full_domain', [], [], [], [], DLPreprocessParam)
    preprocess_dl_dataset (DLDataset, OutputDir, DLPreprocessParam, PreprocessSettings, DLDatasetFileName)
    * 
    * 获取样本集DLDataset中的样本
    get_dict_tuple (DLDataset, 'samples', DatasetSamples)
    if (ExampleSpecificPreprocessing)
        read_dl_samples (DLDataset, [0:|DatasetSamples| - 1], DLSampleBatch)
        preprocess_dl_samples_bottle(DLSampleBatch)
        write_dl_samples (DLDataset, [0:|DatasetSamples| - 1], DLSampleBatch, [], [])
    endif
    * 
    * 展示10个随机预处理后的 DLSamples
    create_dict (WindowDict)
    for Index := 0 to 9 by 1
        SampleIndex := int(rand(1) * |DatasetSamples|)
        read_dl_samples (DLDataset, SampleIndex, DLSample)
        dev_display_dl_data (DLSample, [], DLDataset, 'anomaly_ground_truth', [], WindowDict)
        dev_disp_text ('Press Run (F5) to continue', 'window', 'bottom', 'right', 'black', [], [])
        * 
        get_dict_tuple (WindowDict, 'anomaly_ground_truth', WindowHandles)
        dev_set_window (WindowHandles[0])
        dev_disp_text ('Preprocessed image', 'window', 'top', 'left', 'black', [], [])
        * 
        *stop ()
    endfor
    dev_close_window_dict (WindowDict)
    * 
    *stop ()
    * 
    *----------------------------- 2.) 训练 DLDataset -----------------------*
    *--- 设置训练参数
    * 是否展示训练过程
    EnableDisplay := true
    * 设置训练终止条件,错误率、次数,满足其一则终止
    ErrorThreshold := 0.001
    MaxNumEpochs := 15
    * 训练集中用于训练的样本比
    *DomainRatio := 0.25
    DomainRatio := 0.75
    * 正则化噪声,使得训练更健壮。为防止训练失败,可以设置大些
    RegularizationNoise := 0.01
    * 创建字典,并存储键-值对
    create_dict (TrainParamAnomaly)
    set_dict_tuple (TrainParamAnomaly, 'regularization_noise', RegularizationNoise)
    set_dict_tuple (TrainParamAnomaly, 'error_threshold', ErrorThreshold)
    set_dict_tuple (TrainParamAnomaly, 'domain_ratio', DomainRatio)
    *--- 创建训练参数
    create_dl_train_param (DLModelHandle, MaxNumEpochs, [], EnableDisplay, 73, 'anomaly', TrainParamAnomaly, TrainParam)
    *--- 开始训练
    train_dl_model (DLDataset, DLModelHandle, TrainParam, 0, TrainResults, TrainInfos, EvaluationInfos)
    dev_disp_text ('Press Run (F5) to continue', 'window', 'bottom', 'right', 'black', [], [])
    stop ()
    * 
    dev_close_window ()
    * 
    * 保存模型
    write_dl_model (DLModelHandle, ModelFileFullName)
    * 
    * 
    *----------------------------- 3.) 评估模型(计算得到分类、分割的阈值) -----------------------*
    * 标准差因子(如果缺陷很小,推荐较大值)
    StandardDeviationFactor := 1.0
    * 往字典DLModelHandle里存储键-值对
    set_dl_model_param (DLModelHandle, 'standard_deviation_factor', StandardDeviationFactor) 
    * 计算阈值
    create_dict (GenParamThreshold)
    set_dict_tuple (GenParamThreshold, 'enable_display', 'true')
    compute_dl_anomaly_thresholds (DLModelHandle, DLDataset, GenParamThreshold, AnomalySegmentationThreshold, AnomalyClassificationThresholds)
    dev_disp_text ('Press Run (F5) to continue', 'window', 'bottom', 'right', 'black', [], [])
    stop ()
    * 
    dev_close_window ()
    * 
    * 设置评估参数,在test集上进行评估
    create_dict (GenParamEvaluation)
    set_dict_tuple (GenParamEvaluation, 'measures', 'all')
    set_dict_tuple (GenParamEvaluation, 'anomaly_classification_thresholds', AnomalyClassificationThresholds)
    evaluate_dl_model (DLDataset, DLModelHandle, 'split', 'test', GenParamEvaluation, EvaluationResult, EvalParams)
    * 
    * 要展示的参数
    create_dict (GenParamDisplay)
    * 直方图、图例
    set_dict_tuple (GenParamDisplay, 'display_mode', ['score_histogram','score_legend'])
    create_dict (WindowDict)
    dev_display_anomaly_detection_evaluation (EvaluationResult, EvalParams, GenParamDisplay, WindowDict)
    dev_disp_text ('Press Run (F5) to continue', 'window', 'bottom', 'right', 'black', 'box', 'true')
    stop ()
    * 
    dev_close_window_dict (WindowDict)
    * 
    * 可视化precision精确率, recall召回率, and confusion matrix
    set_dict_tuple (GenParamDisplay, 'display_mode', ['pie_charts_precision','pie_charts_recall','absolute_confusion_matrix'])
    * 展示 AnomalyClassificationThresholds 中的一个阈值(第三个)
    set_dict_tuple (GenParamDisplay, 'classification_threshold_index', 2)
    create_dict (WindowDict)
    dev_display_anomaly_detection_evaluation (EvaluationResult, EvalParams, GenParamDisplay, WindowDict)
    dev_disp_text ('Press Run (F5) to continue', 'window', 'bottom', 'right', 'black', [], [])
    stop ()
    * 
    dev_close_window_dict (WindowDict)
    * 
    * 
    *----------------------------- 4.) 测试 -----------------------*
    *** read_dl_model(ModelFullName, DLModelHandle)
    ************************ 测试的样本,随机的10个ng图(低于10以实际为准)
    *list_image_files (ImageDir + '/' + ImageSubDirs, 'default', 'recursive', ImageFiles)
    list_image_files (ImageDir + '/' + 'ng', 'default', 'recursive', ImageFiles)
    * 打乱数据集
    tuple_shuffle (ImageFiles, ImageFilesShuffled)
    * 设置阈值(模型训练后得到)
    InferenceClassificationThreshold := AnomalyClassificationThresholds[2]
    InferenceSegmentationThreshold := AnomalySegmentationThreshold
    * 
    * 创建类别标签字典(不起作用,但是必须有)
    create_dict (DLDatasetInfo)
    set_dict_tuple (DLDatasetInfo, 'class_names', ['ok','ng'])
    set_dict_tuple (DLDatasetInfo, 'class_ids', [0,1])
    * 创建字典,承载窗体信息
    create_dict (WindowDict)
    for IndexInference := 0 to min2(|ImageFilesShuffled|,10) - 1 by 1
        * 读图
        read_image (Image, ImageFilesShuffled[IndexInference])
        gen_dl_samples_from_images (Image, DLSample)
        preprocess_dl_samples(DLSample, DLPreprocessParam)
        * 与训练时相同的特定处理
        if (ExampleSpecificPreprocessing)
            preprocess_dl_samples_bottle (DLSample)
        endif
        * 
        apply_dl_model (DLModelHandle, DLSample, [], DLResult)
        threshold_dl_anomaly_results (InferenceSegmentationThreshold, InferenceClassificationThreshold, DLResult)
        * 展示结果
        dev_display_dl_data (DLSample, DLResult, DLDatasetInfo, ['anomaly_result','anomaly_image'], [], WindowDict)
        dev_disp_text ('Press F5 (continue)', 'window', 'bottom', 'center', 'black', [], [])
        stop ()
    endfor
    * 
    ************************ 测试的样本,随机的10个ok图(低于10以实际为准)
    list_image_files (ImageDir + '/' + 'ok', 'default', 'recursive', ImageFiles)
    tuple_shuffle (ImageFiles, ImageFilesShuffled)
    for IndexInference := 0 to min2(|ImageFilesShuffled|,10) - 1 by 1
        read_image (Image, ImageFilesShuffled[IndexInference])
        gen_dl_samples_from_images (Image, DLSample)
        preprocess_dl_samples(DLSample, DLPreprocessParam)
        if (ExampleSpecificPreprocessing)
            preprocess_dl_samples_bottle (DLSample)
        endif
        apply_dl_model (DLModelHandle, DLSample, [], DLResult)
        threshold_dl_anomaly_results (InferenceSegmentationThreshold, InferenceClassificationThreshold, DLResult)
        dev_display_dl_data (DLSample, DLResult, DLDatasetInfo, ['anomaly_result','anomaly_image'], [], WindowDict)
        dev_disp_text ('Press F5 (continue)', 'window', 'bottom', 'center', 'black', [], [])
        stop ()
    endfor
    
    dev_close_window_dict (WindowDict)

    如果已有模型 *.hdl,可以直接测试

    * 读取模型
    read_dl_model ('E:/整条/model_final.hdl', DLModelHandle)
    * 设置阈值(模型训练后得到)
    InferenceClassificationThreshold := 0.183618
    InferenceSegmentationThreshold := 0.236205
    * 用模型中已设定的尺寸缩放
    get_dl_model_param (DLModelHandle, 'image_width', ImageWidth)
    get_dl_model_param (DLModelHandle, 'image_height', ImageHeight)
    create_dl_preprocess_param ('anomaly_detection', ImageWidth, ImageHeight, 3, [], [], 'constant_values', 'full_domain', [], [], [], [], DLPreprocessParam)
    * 创建类别标签字典(不起作用,但是必须有)
    create_dict (DLDatasetInfo)
    set_dict_tuple (DLDatasetInfo, 'class_names', ['ok','ng'])
    set_dict_tuple (DLDatasetInfo, 'class_ids', ['0','1'])
    * 创建字典,承载窗体信息
    create_dict (WindowDict)
    * 读图
    list_files ('E:/整条/ng', ['files','follow_links','recursive'], ImageFiles)
    tuple_regexp_select (ImageFiles, ['\.(tif|tiff|gif|bmp|jpg|jpeg|jp2|png|pcx|pgm|ppm|pbm|xwd|ima|hobj)$','ignore_case'], ImageFiles)
    for Index := 0 to |ImageFiles| - 1 by 1
        read_image (Image, ImageFiles[Index])
        * Image Acquisition 01: Do something
        gen_dl_samples_from_images (Image, DLSample)
        preprocess_dl_samples(DLSample, DLPreprocessParam)
        preprocess_dl_samples_bottle (DLSample)
        apply_dl_model (DLModelHandle, DLSample, [], DLResult)
        threshold_dl_anomaly_results (InferenceSegmentationThreshold, InferenceClassificationThreshold, DLResult)
        * 展示结果
        dev_display_dl_data (DLSample, DLResult, DLDatasetInfo, ['anomaly_result','anomaly_image'], [], WindowDict)
        dev_disp_text ('Press F5 (continue)', 'window', 'bottom', 'center', 'black', [], [])
        stop ()  
        
    endfor
    dev_close_window_dict (WindowDict)
  • 相关阅读:
    iOS仿UC浏览器顶部频道滚动效果
    OC中NSClassFromString()与NSStringFromClass()的用法及应用场景
    利用工具MailUtils实现邮件的发送,遇到的大坑,高能预警!!
    使用response实现文件下载注意点
    mac版MyEclipse的安装及创建web项目
    Mac系统下安装Tomcat,以及终端出现No such file or directory的错误提示解决方案
    机器学习笔记-Python简介
    解决mscordacwks.dll不一致问题
    IIS日志如何记录X-Forwarded-For
    深入理解Redis(番外)——持久化
  • 原文地址:https://www.cnblogs.com/xixixing/p/13156875.html
Copyright © 2011-2022 走看看