算法图解通俗易懂,下面是随书练习程序,基于python3
二分法
#二分法 def binary_search(list, item): low = 0 high = len(list)-1 while low <= high: mid = (low + high) guess = list[mid] if guess == item: return mid if guess > item: high = mid - 1 else: low = mid + 1 return None
my_list = [1, 3, 5, 7, 9] print(binary_search(my_list, 3)) # 1 print(binary_search(my_list, -1)) # None
排序
#排序 def findSmallest(arr): smallest = arr[0] smallest_index = 0 for i in range(1, len(arr)): if arr[i] < smallest: smallest = arr[i] smallest_index = i return smallest_index #现在可以使用这个函数来编写选择排序算法了。 def selectionSort(arr): newArr = [] for i in range(len(arr)): smallest = findSmallest(arr) newArr.append(arr.pop(smallest)) return newArr
print(selectionSort([5, 3, 6, 2, 10]))
递归
#递归方式实现倒计时 def countdown(i): print(i) if i <= 0: return else: countdown(i-1)
print(countdown(5))
栈
#调用栈 def greet2(name): print("how are you, " + name + "?") def bye(): print("ok bye!") def greet(name): print("hello, " + name + "!") greet2(name) print("getting ready to say bye...") bye()
print(greet('jiaweican'))
递归调用栈
#递归调用栈 def fact(x): if x == 1: return 1 else: return x * fact(x-1)
print(fact(5))
求和
def sum(arr): total = 0 for x in arr: total += x return total
print(sum([1, 2, 3, 4]))
递归方法求和
#递归方法实现求和 def sum(arr): n=len(arr) if n>0: a=arr[0] arr.remove(arr[0]) return sum(arr)+a else: return 0
print(sum([1,3,5]))
递归方法计数
#递归方法实现计算列表元素个数 def count(arr): a=1 if arr==[]: return 0 else: arr.remove(arr[0]) return count(arr)+a
print(count([1,1,1,2,1,1,1]))
快速排序
#快速排序 def quicksort(array): if len(array) < 2: return array else: pivot = array[0] less = [i for i in array[1:] if i <= pivot] greater = [i for i in array[1:] if i > pivot] return quicksort(less) + [pivot] + quicksort(greater)
print(quicksort([10, 5, 2, 3]))
搜索
voted = {} def check_voter(name): if voted.get(name): print("kick them out!") else: voted[name] = True print("let them vote!")
graph = {} graph["you"] = ["alice", "bob", "claire"] graph["bob"] = ["anuj", "peggy"] graph["alice"] = ["peggy"] graph["claire"] = ["thom", "jonny"] graph["anuj"] = [] graph["peggy"] = [] graph["thom"] = [] graph["jonny"] = []
from collections import deque
def person_is_seller(name): return name[-1] == 'm'
def search(name): search_queue = deque() search_queue += graph[name] searched = [] while search_queue: person = search_queue.popleft() if not person in searched: if person_is_seller(person): print(person + " is a mango seller!") return True else: search_queue += graph[person] searched.append(person) return False
search("you")
贪婪算法
#贪婪算法 states_needed = set(["mt", "wa", "or", "id", "nv", "ut", "ca", "az"])
stations = {} stations["kone"] = set(["id", "nv", "ut"]) stations["ktwo"] = set(["wa", "id", "mt"]) stations["kthree"] = set(["or", "nv", "ca"]) stations["kfour"] = set(["nv", "ut"]) stations["kfive"] = set(["ca", "az"])
final_stations = set()
while states_needed: best_station = None states_covered = set() for station, states in stations.items(): covered = states_needed & states if len(covered) > len(states_covered): best_station = station states_covered = covered states_needed -= states_covered final_stations.add(best_station)
print(final_stations)