zoukankan      html  css  js  c++  java
  • #4699. 序列

    题目描述

    题解

    考虑对于 $k$ 的答案如何计算,非常暴力的话就是找出合法的 $(i,j)$ ,它对答案的贡献就是 $2^{i-1} imes 2^{n-j}$ ,然后我们稍微想一下,如果 $i$ 有很多个 $j$ 都是合法的话,或者 $j$ 有很多个 $i$ 都是合法的话,那其实就是对 $2^{n-j}$ 做后缀和和对 $2^{i-1}$ 做前缀和

    于是我们可以在求 $k$ 的答案的时候维护4个树状数组: $<k$ 的前缀和、后缀和, $>k$ 的前缀和、后缀和,然后考虑从 $k-1$ 到 $k$ 的时候要把 $k$ 的信息从 $>k$ 的树状数组和答案中删掉,然后再扔到 $<k$ 的树状数组中去更新答案即可

    效率: $O(nlogn)$

    代码

    #include <cstdio>
    using namespace std;
    const int N=1e5+5,P=1e9+7;
    int n,a[N],w[N],p[N],s[4][N],S;
    void upd(int o,int x,int v){
        for (;x<=n;x+=x&-x) (s[o][x]+=v)%=P;
    }
    int qry(int o,int x){
        int v=0;
        for (;x;x-=x&-x) (v+=s[o][x])%=P;
        return v;
    }
    void Upd(int o,int x,int v){
        for (;x;x-=x&-x) (s[o][x]+=v)%=P;
    }
    int Qry(int o,int x){
        int v=0;
        for (;x<=n;x+=x&-x) (v+=s[o][x])%=P;
        return v;
    }
    int main(){
        scanf("%d",&n);w[0]=1;
        for (int i=1;i<=n;i++)
            scanf("%d",&a[i]),
            w[i]=(w[i-1]<<1)%P,p[a[i]]=i;
        for (int i=1;i<=n;i++)
            upd(0,i,w[i-1]),Upd(1,i,w[n-i]);
        for (int x,i=1;i<=n;i++){
            x=p[i];
            upd(0,x,P-w[x-1]);
            Upd(1,x,P-w[n-x]);
            (S+=P-1ll*Qry(3,x)*w[x-1]%P)%=P;
            (S+=P-1ll*qry(2,x)*w[n-x]%P)%=P;
            printf("%d
    ",S);
            (S+=1ll*Qry(1,x)*w[x-1]%P)%=P;
            (S+=1ll*qry(0,x)*w[n-x]%P)%=P;
            upd(2,x,w[x-1]);
            Upd(3,x,w[n-x]);
        }
        return 0;
    }
  • 相关阅读:
    css3 flex
    多行文本溢出 显示... 判断是否多行文本溢出
    事件多次执行
    WinForm布局
    winform 公共控件
    WinForm窗体菜单和工具栏
    2017-4-24WinForm 基础
    2017-4-20实体类,数据访问类.字符串攻击.防攻击
    ADO.net增删改查
    类库,通用变量,is/as运算符,委托。
  • 原文地址:https://www.cnblogs.com/xjqxjq/p/12261712.html
Copyright © 2011-2022 走看看