zoukankan      html  css  js  c++  java
  • 面试总结--操作系统部分(3)

    操作系统部分

    1、进程和线程的区别

    1、进程是资源分配的最小单位,线程是程序执行的最小单位(资源调度的最小单位)
    2、进程有自己的独立地址空间,每启动一个进程,系统就会为它分配地址空间,建立数据表来维护代码段、堆栈段和数据段,这种操作非常昂贵。
    而线程是共享进程中的数据的,使用相同的地址空间,因此CPU切换一个线程的花费远比进程要小很多,同时创建一个线程的开销也比进程要小很多。
    3、线程之间的通信更方便,同一进程下的线程共享全局变量、静态变量等数据,而进程之间的通信需要以通信的方式(IPC)进行。不过如何处理好同步与互斥是编写多线程程序的难点。
    4、但是多进程程序更健壮,多线程程序只要有一个线程死掉,整个进程也死掉了,而一个进程死掉并不会对另外一个进程造成影响,因为进程有自己独立的地址空间。

    2、什么是协程

    线程是最小的【执行单元】
    进程是最小的【资源管理单元】
    协程,英文Coroutines,是一种比【线程】更加【轻量级】的存在。
    正如一个进程可以拥有多个线程一样,一个线程也可以拥有多个协程。
    最重要的是,协程不是被操作系统内核所管理的,而完全是由程序所控制(也就是在用户态执行)这样带来的好处就是:性能得到了很大的提升,不会像线程切换那样消耗资源。

    3、进程间通信方式IPC

    1、管道
    管道的通信介质是文件,这种文件通常称为管道文件,两个进程利用管道文件进行通信时,一个进程为写进程,另一个进程为读进程。写进程通过写端(发送端)往管道文件中写入信息;读进程通过读端(接收端)从管道文件中读取信息。两个进程协调不断地进行写、读,便会构成双方通过管道传递信息的流水线。
    匿名管道pipe
    匿名管道是半双工的,数据只能单向通信;需要双方通信时,需要建立起两个管道;只能用于父子进程或者兄弟进程之间(具有亲缘关系的进程)。
    命名管道fifo
    不同于匿名管道之处在于它提供一个路径名与之关联,以FIFO的文件形式存在于文件系统中。这样,即使与FIFO的创建进程不存在亲缘关系的进程,只要可以访问该路径,就能够彼此通过FIFO相互通信(能够访问该路径的进程以及FIFO的创建进程之间),因此,通过FIFO不相关的进程也能交换数据。值得注意的是,FIFO严格遵循先进先出(first in first out),对管道及FIFO的读总是从开始处返回数据,对它们的写则把数据添加到末尾。

    2、信号
    信号是一种比较复杂的通信方式,信号产生的条件:按键、硬件异常、进程调用kill函数将信号发送给另一个进程、用户调用kill命令将信号发送给其他进程,信号传递的消息比较少,主要用于通知接收进程某个时间已经发生。

    3、消息队列
    消息队列是消息的链表,存放在内核中并由消息队列标识符标识,消息队列克服了信号传递信息少,管道只能承载无格式字节流以及缓冲区大小受限等特点。消息队列起信箱作用,到了就挂在那里,需要的时候去取。消息队列提供了一种在两个不相关进程间传递数据的简单有效的方法。与命名管道相比:消息队列的优势在于,它独立于发送和接收进程而存在,这消除了在同步命名管道的打开和关闭时可能产生的一些困难。消息队列提供了一种从一个进程向另一个进程发送一个数据块的方法。而且,每个数据块被认为含有一个类型,接收进程可以独立地接收含有不同类型值的数据块。
    优点:
    A. 我们可以通过发送消息来几乎完全避免命名管道的同步和阻塞问题。
    B. 我们可以用一些方法来提前查看紧急消息。
    缺点:
    A. 与管道一样,每个数据块有一个最大长度的限制。
    B. 系统中所有队列所包含的全部数据块的总长度也有一个上限。

    4、共享内存

    共享内存就是映射一段能被其他进程所访问的内存,这段共享内存由一个进程创建,但多个进程都可以访问。共享内存是最快的IPC方式,它是针对其他进程间通信方式运行效率低而专门设计的。访问共享内存区域和访问进程独有的内存区域一样快,并不需要通过系统调用或者其它需要切入内核的过程来完成。同时它也避免了对数据的各种不必要的复制。共享内存块提供了在任意数量的进程之间进行高效双向通信的机制。每个使用者都可以读取写入数据,往往与其他通信机制,如信号量配合使用,来实现进程间的同步和通信。而它的局限性也在于此.即共享内存的诸进程必须共处同一个计算机系统.有物理内存可以共享才行。共享在共享大数据文件时有用,直接在相同进行内存的拷贝,速度快,效率高,需要考虑访问临界资源并发同步。共享内存区是最快的可用IPC形式,一旦这样的内存区映射到共享它的进程的地址空间,这些进程间数据的传递就不再通过执行任何进入内核的系统调用来传递彼此的数据,节省了时间。
    共享内存和消息队列,FIFO,管道传递消息的区别:
    消息队列,FIFO,管道的消息传递方式一般为
    1:服务器得到输入
    2:通过管道,消息队列写入数据,通常需要从进程拷贝到内核。
    3:客户从内核拷贝到进程
    4:然后再从进程中拷贝到输出文件
    上述过程通常要经过4次拷贝,才能完成文件的传递。
    共享内存只需要
    1:从输入文件到共享内存区
    2:从共享内存区输出到文件
    上述过程不涉及到内核的拷贝,所以花的时间较少。

    本地套接字
    进程间通信的一种方式是使用UNIX套接字sockaddr_un,人们在使用这种方式时往往用的不是网络套接字,而是一种称为本地套接字的方式。本地套接字用于本地进程间的通讯更安全和稳定。
    使用套接字函数socket创建,不过传递的参数与网络套接字不同。域参数应该是PF_LOCAL或者PF_UNIX,而不能用PF_INET之类。本地套接字的通讯类型应该是SOCK_STREAM或SOCK_DGRAM,协议为默认协议。
    创建了套接字后,还必须进行绑定才能使用。不同于网络套接字的绑定,本地套接字的绑定的是struct sockaddr_un结构。struct sockaddr_un结构有两个参数:sun_family、sun_path。sun_family只能是AF_LOCAL或AF_UNIX,而sun_path是本地文件的路径。通常将文件放在/tmp目录下。
    本地套接字的其他操作都与网络套接字相似

    4、用户态和内核态的理解和区别

    1、linux进程有4GB地址空间,如图所示:

    3G-4G大部分是共享的,是内核态的地址空间。这里存放整个内核的代码和所有的内核模块以及内核所维护的数据。
    2、特权级的概念:
    对于任何操作系统来说,创建一个进程是核心功能。创建进程要做很多工作,会消耗很多物理资源。比如分配物理内存,父子进程拷贝信息,拷贝设置页目录页表等等,这些工作得由特定的进程去做,所以就有了特权级别的概念。最关键的工作必须交给特权级最高的进程去执行,这样可以做到集中管理,减少有限资源的访问和使用冲突。inter x86架构的cpu一共有四个级别,0-3级,0级特权级最高,3级特权级最低。
    3、用户态和内核态的概念:
    当一个进程在执行用户自己的代码时处于用户运行态(用户态),此时特权级最低,为3级,是普通的用户进程运行的特权级,大部分用户直接面对的程序都是运行在用户态。Ring3状态不能访问Ring0的地址空间,包括代码和数据;当一个进程因为系统调用陷入内核代码中执行时处于内核运行态(内核态),此时特权级最高,为0级。执行的内核代码会使用当前进程的内核栈,每个进程都有自己的内核栈。
    用户运行一个程序,该程序创建的进程开始时运行自己的代码,处于用户态。如果要执行文件操作、网络数据发送等操作必须通过write、send等系统调用,这些系统调用会调用内核的代码。进程会切换到Ring0,然后进入3G-4G中的内核地址空间去执行内核代码来完成相应的操作。内核态的进程执行完后又会切换到Ring3,回到用户态。这样,用户态的程序就不能随意操作内核地址空间,具有一定的安全保护作用。这说的保护模式是指通过内存页表操作等机制,保证进程间的地址空间不会互相冲突,一个进程的操作不会修改另一个进程地址空间中的数据。
    4、用户态和内核态的切换
    当在系统中执行一个程序时,大部分时间是运行在用户态下的,在其需要操作系统帮助完成一些用户态自己没有特权和能力完成的操作时就会切换到内核态。
    用户态切换到内核态的3种方式
    (1)系统调用
    这是用户态进程主动要求切换到内核态的一种方式。用户态进程通过系统调用申请使用操作系统提供的服务程序完成工作。例如fork()就是执行了一个创建新进程的系统调用。系统调用的机制和新是使用了操作系统为用户特别开放的一个中断来实现,如Linux的int 80h中断。
    (2)异常
    当cpu在执行运行在用户态下的程序时,发生了一些没有预知的异常,这时会触发由当前运行进程切换到处理此异常的内核相关进程中,也就是切换到了内核态,如缺页异常。
    (3)外围设备的中断
    当外围设备完成用户请求的操作后,会向CPU发出相应的中断信号,这时CPU会暂停执行下一条即将要执行的指令而转到与中断信号对应的处理程序去执行,如果前面执行的指令时用户态下的程序,那么转换的过程自然就会是 由用户态到内核态的切换。如硬盘读写操作完成,系统会切换到硬盘读写的中断处理程序中执行后边的操作等。
    这三种方式是系统在运行时由用户态切换到内核态的最主要方式,其中系统调用可以认为是用户进程主动发起的,异常和外围设备中断则是被动的。从触发方式上看,切换方式都不一样,但从最终实际完成由用户态到内核态的切换操作来看,步骤有事一样的,都相当于执行了一个中断响应的过程。系统调用实际上最终是中断机制实现的,而异常和中断的处理机制基本一致。
    5、用户态到内核态具体的切换步骤:
    (1)从当前进程的描述符中提取其内核栈的ss0及esp0信息。
    (2)使用ss0和esp0指向的内核栈将当前进程的cs,eip,eflags,ss,esp信息保存起来,这个过程也完成了由用户栈到内核栈的切换过程,同时保存了被暂停执行的程序的下一条指令。
    (3)将先前由中断向量检索得到的中断处理程序的cs,eip信息装入相应的寄存器,开始执行中断处理程序,这时就转到了内核态的程序执行了。

    5、操作系统分配的进程空间是怎样的?线程能共享哪些?

    同一进程间的线程共享的资源有:
    a. 堆。由于堆是在进程空间中开辟出来的,所以它是理所当然地被共享的;因此new出来的都是共享的(16位平台上分全局堆和局部堆,局部堆是独享的)
    b. 全局变量。它是与具体某一函数无关的,所以也与特定线程无关;因此也是共享的
    c. 静态变量虽然对于局部变量来说,它在代码中是“放”在某一函数中的,但是其存放位置和全局变量一样,存于堆中开辟的.bss和.data段,是共享的
    d. 文件等公用资源。这个是共享的,使用这些公共资源的线程必须同步。Win32 提供了几种同步资源的方式,包括信号、临界区、事件和互斥体。

    独享的资源有
    a. 栈。栈是独享的
    b. 寄存器。这个可能会误解,因为电脑的寄存器是物理的,每个线程去取值难道不一样吗?其实线程里存放的是副本,包括程序计数器PC
    线程共享的环境包括:进程代码段、进程的公有数据(利用这些共享的数据,线程很容易的实现相互之间的通讯)、进程打开的文件描述符、信号的处理器、进程的当前目录和进程用户ID与进程组ID。

    【个性】进程拥有这许多共性的同时,还拥有自己的个性,才能实现并发性
    1.线程ID
    每个线程都有自己的线程ID,这个ID在本进程中是唯一的。进程用此来标识线程。

    2.寄存器组的值
    由于线程间是并发运行的,每个线程有自己不同的运行线索,当从一个线程切换到另一个线程上 时,必须将原有的线程的寄存器集合的状态保存,以便将来该线程在被重新切换到时能得以恢复。
    3.线程的堆栈
    堆栈是保证线程独立运行所必须的。线程函数可以调用函数,而被调用函数中又是可以层层嵌套的,所以线程必须拥有自己的函数堆栈, 使得函数调用可以正常执行,不受其他线程的影响。
    4.错误返回码
    由于同一个进程中有很多个线程在同时运行,可能某个线程进行系统调用后设置了errno值,而在该 线程还没有处理这个错误,另外一个线程就在此时被调度器投入运行,这样错误值就有可能被修改。所以,不同的线程应该拥有自己的错误返回码变量。
    5.线程的信号屏蔽码
    由于每个线程所感兴趣的信号不同,所以线程的信号屏蔽码应该由线程自己管理。但所有的线程都共享同样的信号处理器。
    6.线程的优先级
    由于线程需要像进程那样能够被调度,那么就必须要有可供调度使用的参数,这个参数就是线程的优先级。

    6、操作系统内存管理方式,分页分段以及段页式的优缺点

    一. 分页存储管理
    1.基本思想
    用户程序的地址空间被划分成若干固定大小的区域,称为“页”,相应地,内存空间分成若干个物理块,页和块的大小相等。可将用户程序的任一页放在内存的任一块中,实现了离散分配。
    1)等分内存
    页式存储管理将内存空间划分成等长的若干物理块,成为物理页面也成为物理块,每个物理块的大小一般取2的整数幂。内存的所有物理块从0开始编号,称作物理页号。
    2) 逻辑地址
    系统将程序的逻辑空间按照同样大小也划分成若干页面,称为逻辑页面也称为页。程序的各个逻辑页面从0开始依次编号,称作逻辑页号或相对页号。每个页面内从0开始编址,称为页内地址。程序中的逻辑地址由两部分组成:页号P和页内位移量W。
    在执行一个程序之前,内存管理器需要的准备工作:

    1. 确定程序的页数
    2. 在主存中留出足够的空闲页面
    3. 将程序的所有页面载入主存里。(静态的分页,页面无需连续)
    1. 分页存储管理的地址机构

    页号x位,每个作业最多2的x次方页,页内位移量的位数表示页的大小,若页内位移量y位,则2的y次方,即页的大小,页内地址从000000000000开始到2的y次方
    若给定一个逻辑地址为A,页面大小为L,则
    页号P=INT[A/L],页内地址W=A MOD L

    3.内存分配
    相邻的页面在内存中不一定相邻,即分配给程序的内存块之间不一定连续。对程序地址空间的分页是系统自动进行的,即对用户是透明的。由于页面尺寸为2的整数次幂,故相对地址中的高位部分即为页号,低位部分为页内地址。
    4. 页表
    分页系统中,允许将进程的每一页离散地存储在内存的任一物理块中,为了能在内存中找到每个页面对应的物理块,系统为每个进程建立一张页表,用于记录进程逻辑页面与内存物理页面之间的对应关系。页表的作用是实现从页号到物理块号的地址映射,地址空间有多少页,该页表里就登记多少行,且按逻辑页的顺序排列,形如:

    1. 地址变换
      页式虚拟存储系统的逻辑地址是由页号和页内地址两部分组成,地址变换过程如图7-3所示。假定页面的大小为4K,图7-3中所示的十进制逻辑地址8203经过地址变换后,形成的物理地址a应为十进制。

    页号: 8203/4096 = 2;页内偏移:8203%4096= 11;物理地址:物理块号*页面大小+ 页内偏移= 28683。
    6.具有快表的地址变换机构
    分页系统中,CPU每次要存取一个数据,都要两次访问内存(访问页表、访问实际物理地址)。为提高地址变换速度,增设一个具有并行查询能力的特殊高速缓冲存储器,称为“联想存储器”或“快表”,存放当前访问的页表项。
    7.页面的共享与保护
    当多个不同进程中需要有相同页面信息时,可以在主存中只保留一个副本,只要让这些进程各自的有关项中指向内存同一块号即可。同时在页表中设置相应的“存取权限”,对不同进程的访问权限进行各种必要的限制。

    二.分段存储管理
    1.基本思想
    页面是主存物理空间中划分出来的等长的固定区域。分页方式的优点是页长固定,因而便于构造页表、易于管理,且不存在外碎片。但分页方式的缺点是页长与程序的逻辑大小不相关。例如,某个时刻一个子程序可能有一部分在主存中,另一部分则在辅存中。这不利于编程时的独立性,并给换入换出处理、存储保护和存储共享等操作造成麻烦。
    另一种划分可寻址的存储空间的方法称为分段。段是按照程序的自然分界划分的长度可以动态改变的区域。通常,程序员把子程序、操作数和常数等不同类型的数据划分到不同的段中,并且每个程序可以有多个相同类型的段。
    段表本身也是一个段,可以存在辅存中,但一般是驻留在主存中。
    将用户程序地址空间分成若干个大小不等的段,每段可以定义一组相对完整的逻辑信息。存储分配时,以段为单位,段与段在内存中可以不相邻接,也实现了离散分配。
    2. 分段地址结构
    作业的地址空间被划分为若干个段,每个段定义了一组逻辑信息。例程序段、数据段等。每个段都从0开始编址,并采用一段连续的地址空间。段的长度由相应的逻辑信息组的长度决定,因而各段长度不等。整个作业的地址空间是二维的。
    在段式虚拟存储系统中,虚拟地址由段号和段内地址组成,虚拟地址到实存地址的变换通过段表来实现。每个程序设置一个段表,段表的每一个表项对应一个段,每个表项至少包括三个字段:有效位(指明该段是否已经调入主存)、段起址(该段在实存中的首地址)和段长(记录该段的实际长度)。
    3. 地址变换
    针对每一个虚拟地址,存储管理部件首先以段号S为索引访问段表的第S个表项。若该表项的有效位为1,则将虚拟地址的段内地址D与该表项的段长字段比较;若段内地址较大则说明地址越界,将产生地址越界中断;否则,将该表项的段起址与段内地址相加,求得主存实地址并访存。如果该表项的有效位为0,则产生缺页中断,从辅存中调入该页,并修改段表。段式虚拟存储器虚实地址变换过程如图所示。

    绝对地址=根据段号找到段表中的起始地址+段内地址 (如果段内地址超过限长则产生“地址越界”程序性中断事件达到存储保护)
    4.分段存储方式的优缺点
    分页对程序员而言是不可见的,而分段通常对程序员而言是可见的,因而分段为组织程序和数据提供了方便。与页式虚拟存储器相比,段式虚拟存储器有许多优点:
    (1)段的逻辑独立性使其易于编译、管理、修改和保护,也便于多道程序共享。
    (2)段长可以根据需要动态改变,允许自由调度,以便有效利用主存空间。
    (3)方便编程,分段共享,分段保护,动态链接,动态增长
    因为段的长度不固定,段式虚拟存储器也有一些缺点:
    (1)主存空间分配比较麻烦。
    (2)容易在段间留下许多碎片,造成存储空间利用率降低。
    (3)由于段长不一定是2的整数次幂,因而不能简单地像分页方式那样用虚拟地址和实存地址的最低若干二进制位作为段内地址,并与段号进行直接拼接,必须用加法操作通过段起址与段内地址的求和运算得到物理地址。因此,段式存储管理比页式存储管理方式需要更多的硬件支持。

    三.段页式存储

    1. 段页式存储管理的基本思想
      段页式存储组织是分段式和分页式结合的存储组织方法,这样可充分利用分段管理和分页管理的优点。
      (1) 用分段方法来分配和管理虚拟存储器。程序的地址空间按逻辑单位分成基本独立的段,而每一段有自己的段名,再把每段分成固定大小的若干页。
      (2) 用分页方法来分配和管理实存。即把整个主存分成与上述页大小相等的存储块,可装入作业的任何一页。程序对内存的调入或调出是按页进行的。但它又可按段实现共享和保护。

       地址空间图
      

      (3) 逻辑地址结构。一个逻辑地址用三个参数表示:段号S;页号P;页内地址d。

      逻辑地址结构

    (4)段表、页表、段表地址寄存器。为了进行地址转换,系统为每个作业建立一个段表,并且要为该作业段表中的每一个段建立一个页表。系统中有一个段表地址寄存器来指出作业的段表起始地址和段表长度。

    2.地址变换过程

    1. 慢速地址转换过程
      一个逻辑地址为:基地址x、段号s、页号p和页内地址d,求物理地址(((x)+s)+p)*2^(11)+d

    在段页式系统中,为了便于实现地址变换,须配置一个段表寄存器,其中存放段表始址和段表长TL。

    1. 进行地址变换时,首先利用段号S,将它与段表长TL进行比较。若S<TL,表示未越界
    2. 于是利用段表始址和段号来求出该段所对应的段表项在段表中的位置,从中得到该段的页表始址
    3. 利用逻辑地址中的段内页号P来获得对应页的页表项位置,从中读出该页所在的物理块号b
    4. 再利用块号b和页内地址来构成物理地址。
      上图示出了段页式系统中的地址变换机构。在段页式系统中,为了获得一条指令或数据,须三次访问内存。第一次访问是访问内存中的段表,从中取得页表始址;第二次访问是访问内存中的页表,从中取出该页所在的物理块号,并将该块号与页内地址一起形成指令或数据的物理地址;第三次访问才是真正从第二次访问所得的地址中,取出指令或数据。
      显然,这使访问内存的次数增加了近两倍。为了提高执行速度,在地址变换机构中增设一个高速缓冲寄存器。每次访问它时,都须同时利用段号和页号去检索高速缓存,若找到匹配的表项,便可从中得到相应页的物理块号,用来与页内地址一起形成物理地址;若未找到匹配表项,则仍须再三次访问内存。
      3.段页式存储管理的优缺点
      优点
      (1) 它提供了大量的虚拟存储空间。
      (2) 能有效地利用主存,为组织多道程序运行提供了方便。
      缺点:
      (1) 增加了硬件成本、系统的复杂性和管理上的开消。
      (2) 存在着系统发生抖动的危险。
      (3) 存在着内碎片。
      (4) 还有各种表格要占用主存空间。
      段页式存储管理技术对当前的大、中型计算机系统来说,算是最通用、最灵活的一种方案。

    7、页面置换算法有哪些,FIFO为什么不好?如何改进?LRU思想,手写LRU

    页置换算法FIFO、LRU、OPT
    为什么需要页置换:
    在地址映射过程中,若在页面中发现所要访问的页面不再内存中,则产生缺页中断。当发生缺页中断时操作系统必须在内存选择一个页面将其移出内存,以便为即将调入的页面让出空间。而用来选择淘汰哪一页的规则叫做页面置换算法
    实例
    考虑下述页面走向:
    1,2,3,4,2,1,5,6,2,1,2,3,7,6,3,2,1,2,3,6
    当内存块数量分别为3时,试问FIFO、LRU、OPT这三种置换算法的缺页次数各是多少?
    假设:缺页定义为所有内存块最初都是空的,所以第一次用到的页面都产生一次缺页。
    当内存块数量为3时:
    1、FIFO( First Input First Output)先进先出。

    发生缺页中断的次数为16。
      在FIFO算法中,先进入内存的页面被先换出。当页6要调入时,内存的状态为4、1、5,考查页6之前调入的页面,分别为5、1、2、4,可见4为最先进入内存的,本次应换出,然后把页6调入内存。
    2、LRU(Least Recently Used)直译为“最近最少使用”。

    发生缺页中断的次数为15。
      在LRU算法中,最近最少使用的页面被先换出。当页6要调入时,内存的状态为5、2、1,考查页6之前调入的页面,分别为5、1、2,可见2为最近一段时间内使用最少的,本次应换出,然后把页6调入内存。
    3、最佳页面替换算法

    发生缺页中断的次数为11。
      在OPT算法中,在最远的将来才被访问的页面被先换出。当页6要调入时,内存的状态为1、2、5,考查页6后面要调入的页面,分别为2、1、2、…,可见5为最近一段时间内使用最少的,本次应换出,然后把页6调入内存。
    总结
    • LRU算法:平均命中率最高算法,选择近期最少访问的页作为被替换页。 无Belady异常
    • FIFO算法:是一个实现起来比较简单的页面置换算法,其基本原则是“选择最早进入主存的页面淘汰”,理由是最早进入的页面,其不再使用的可能性比最近调入的页面要大。有Belady异常
    • OPT算法:根据未来实际使用情况将未来的近期里不用的页替换出去。这种算法是用来评价期它替 换算法好坏的标准。不可能实现。所选择的被淘汰页面将是以后永不使用的,或者是在最长时间内不再被访问的页面,这样可以保证获得最低的缺页率。无Belady异常

    LRU的java实现

    public class LRUCache {
        private HashMap<String, LRUNode> map;
        private int capacity;
        private LRUNode head;
        private LRUNode tail;
        public void set(String key, Object value) {
            LRUNode node = map.get(key);
            if (node != null) {
                node = map.get(key);
                node.value = value;
                remove(node, false);
            } else {
                node = new LRUNode(key, value);
                if (map.size() >= capacity) {
                    // 每次容量不足时先删除最久未使用的元素
                    remove(tail, true);
                }
                map.put(key, node);
            }
            // 将刚添加的元素设置为head
            setHead(node);
        }
        public Object get(String key) {
            LRUNode node = map.get(key);
            if (node != null) {
                // 将刚操作的元素放到head
                remove(node, false);
                setHead(node);
                return node.value;
            }
            return null;
        }
        private void setHead(LRUNode node) {
            // 先从链表中删除该元素
            if (head != null) {
                node.next = head;
                head.prev = node;
            }
            head = node;
            if (tail == null) {
                tail = node;
            }
        }
        // 从链表中删除此Node,此时要注意该Node是head或者是tail的情形
        private void remove(LRUNode node, boolean flag) {
            if (node.prev != null) {
                node.prev.next = node.next;
            } else {
                head = node.next;
            }
            if (node.next != null) {
                node.next.prev = node.prev;
            } else {
                tail = node.prev;
            }
            node.next = null;
            node.prev = null;
            if (flag) {
                map.remove(node.key);
            }
        }
        public LRUCache(int capacity) {
            this.capacity = capacity;
            this.map = new HashMap<String, LRUNode>();
        }
    }
    
    

    8、死锁条件,解决方式。

    产生死锁的四个必要条件:
    〈1〉互斥条件。即某个资源在一段时间内只能由一个进程占有,不能同时被两个或两个以上的进程占有。这种独占资源如CD-ROM驱动器,打印机等等,必须在占有该资源的进程主动释放它之后,其它进程才能占有该资源。这是由资源本身的属性所决定的。如独木桥就是一种独占资源,两方的人不能同时过桥。
    〈2〉不可抢占条件。进程所获得的资源在未使用完毕之前,资源申请者不能强行地从资源占有者手中夺取资源,而只能由该资源的占有者进程自行释放。如过独木桥的人不能强迫对方后退,也不能非法地将对方推下桥,必须是桥上的人自己过桥后空出桥面(即主动释放占有资源),对方的人才能过桥。
    〈3〉占有且申请条件。进程至少已经占有一个资源,但又申请新的资源;由于该资源已被另外进程占有,此时该进程阻塞;但是,它在等待新资源之时,仍继续占用已占有的资源。还以过独木桥为例,甲乙两人在桥上相遇。甲走过一段桥面(即占有了一些资源),还需要走其余的桥面(申请新的资源),但那部分桥面被乙占有(乙走过一段桥面)。甲过不去,前进不能,又不后退;乙也处于同样的状况。
    〈4〉循环等待条件。存在一个进程等待序列{P1,P2,...,Pn},其中P1等待P2所占有的某一资源,P2等待P3所占有的某一源,......,而Pn等待P1所占有的的某一资源,形成一个进程循环等待环。就像前面的过独木桥问题,甲等待乙占有的桥面,而乙又等待甲占有的桥面,从而彼此循环等待。
    上面我们提到的这四个条件在死锁时会同时发生。也就是说,只要有一个必要条件不满足,则死锁就可以排除。

    死锁的预防是保证系统不进入死锁状态的一种策略。它的基本思想是要求进程申请资源时遵循某种协议,从而打破产生死锁的四个必要条件中的一个或几个,保证系统不会进入死锁状态。
    〈1〉打破互斥条件。即允许进程同时访问某些资源。但是,有的资源是不允许被同时访问的,像打印机等等,这是由资源本身的属性所决定的。所以,这种办法并无实用价值。
    〈2〉打破不可抢占条件。即允许进程强行从占有者那里夺取某些资源。就是说,当一个进程已占有了某些资源,它又申请新的资源,但不能立即被满足时,它必须释放所占有的全部资源,以后再重新申请。它所释放的资源可以分配给其它进程。这就相当于该进程占有的资源被隐蔽地强占了。这种预防死锁的方法实现起来困难,会降低系统性能。
    〈3〉打破占有且申请条件。可以实行资源预先分配策略。即进程在运行前一次性地向系统申请它所需要的全部资源。如果某个进程所需的全部资源得不到满足,则不分配任何资源,此进程暂不运行。只有当系统能够满足当前进程的全部资源需求时,才一次性地将所申请的资源全部分配给该进程。由于运行的进程已占有了它所需的全部资源,所以不会发生占有资源又申请资源的现象,因此不会发生死锁。但是,这种策略也有如下缺点:
    (1)在许多情况下,一个进程在执行之前不可能知道它所需要的全部资源。这是由于进程在执行时是动态的,不可预测的;
    (2)资源利用率低。无论所分资源何时用到,一个进程只有在占有所需的全部资源后才能执行。即使有些资源最后才被该进程用到一次,但该进程在生存期间却一直占有它们,造成长期占着不用的状况。这显然是一种极大的资源浪费;
    (3)降低了进程的并发性。因为资源有限,又加上存在浪费,能分配到所需全部资源的进程个数就必然少了。
    (4)打破循环等待条件,实行资源有序分配策略(和死锁避免中的加锁顺序差不多)。采用这种策略,即把资源事先分类编号,按号分配,使进程在申请,占用资源时不会形成环路。所有进程对资源的请求必须严格按资源序号递增的顺序提出。

  • 相关阅读:
    hdu4665 DFS
    hdu4665 DFS
    hdu4717 三分(散点的移动)
    POJ 2559 Largest Rectangle in a Histogram(单调栈) && 单调栈
    洛谷 P2347 砝码称重
    洛谷 P3009 [USACO11JAN]利润Profits
    洛谷 P2925 [USACO08DEC]干草出售Hay For Sale
    洛谷 P1616 疯狂的采药
    洛谷 P1086 花生采摘
    洛谷 P1048 采药
  • 原文地址:https://www.cnblogs.com/xjtu-lyh/p/12484651.html
Copyright © 2011-2022 走看看