zoukankan      html  css  js  c++  java
  • Python笔记 #17# Pandas: Merge

    10 Minutes to pandas

    Concat

    df = pd.DataFrame(np.random.randn(10, 4))
    print(df)
    # break it into pieces
    pieces = [df[:3], df[3:7], df[7:]]
    print(pd.concat(pieces))
    #           0         1         2         3
    # 0  0.879526 -1.417311 -1.309299  0.287933
    # 1 -1.194092  1.237536 -0.375177 -0.622846
    # 2  1.449524  1.732103  1.866323  0.327194
    # 3 -0.028595  1.047751  0.629286 -0.611354
    # 4 -1.237406  0.878287  1.407587 -1.637072
    # 5  0.536248  1.172208  0.405543  0.245162
    # 6  0.166374  1.185840  0.132388 -0.832135
    # 7  0.750722 -1.188307  1.306327  1.564907
    # 8 -0.755132 -1.538270 -0.173119  1.341313
    # 9 -0.572171  1.808220  0.688190 -0.672612
    #           0         1         2         3
    # 0  0.879526 -1.417311 -1.309299  0.287933
    # 1 -1.194092  1.237536 -0.375177 -0.622846
    # 2  1.449524  1.732103  1.866323  0.327194
    # 3 -0.028595  1.047751  0.629286 -0.611354
    # 4 -1.237406  0.878287  1.407587 -1.637072
    # 5  0.536248  1.172208  0.405543  0.245162
    # 6  0.166374  1.185840  0.132388 -0.832135
    # 7  0.750722 -1.188307  1.306327  1.564907
    # 8 -0.755132 -1.538270 -0.173119  1.341313
    # 9 -0.572171  1.808220  0.688190 -0.672612

    Join

    类似 sql 里的 join (联表)

    left = pd.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]})
    right = pd.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]})
    print(left)
    print(right)
    print(pd.merge(left, right, on='key'))
    #    key  lval
    # 0  foo     1
    # 1  foo     2
    #    key  rval
    # 0  foo     4
    # 1  foo     5
    #    key  lval  rval
    # 0  foo     1     4
    # 1  foo     1     5
    # 2  foo     2     4
    # 3  foo     2     5

    Merge

    df = pd.DataFrame(np.random.randn(8, 4), columns=['A','B','C','D'])
    print(df)
    s = df.iloc[3]
    print(s)
    df.append(s, ignore_index=True)
    print(df)
    print(df.append(s, ignore_index=True))
    #           A         B         C         D
    # 0 -1.744799 -0.745689 -0.066827 -0.993191
    # 1  0.843984  0.902578  0.845040  1.336861
    # 2  0.865214  1.151313  0.277192 -0.711557
    # 3  0.917065 -0.948935  0.110977  0.047466
    # 4 -1.309586  0.539592  1.956684 -0.117199
    # 5 -0.431144  0.884499 -0.828626 -0.506894
    # 6 -1.263993 -0.826366  1.426688 -0.434647
    # 7 -0.567870 -0.086037  2.166162 -0.396294
    # /
    # A    0.917065
    # B   -0.948935
    # C    0.110977
    # D    0.047466
    # Name: 3, dtype: float64
    # /
    #           A         B         C         D
    # 0 -1.744799 -0.745689 -0.066827 -0.993191
    # 1  0.843984  0.902578  0.845040  1.336861
    # 2  0.865214  1.151313  0.277192 -0.711557
    # 3  0.917065 -0.948935  0.110977  0.047466
    # 4 -1.309586  0.539592  1.956684 -0.117199
    # 5 -0.431144  0.884499 -0.828626 -0.506894
    # 6 -1.263993 -0.826366  1.426688 -0.434647
    # 7 -0.567870 -0.086037  2.166162 -0.396294
    # /
    #           A         B         C         D
    # 0  0.673341  0.211039  0.370737 -0.533311
    # 1 -0.860026 -0.850189 -0.101193 -0.208695
    # 2  1.684126  0.057633  0.775963  0.571528
    # 3  0.340264 -1.576842  1.251407  1.703995
    # 4  0.201961 -0.016234 -1.077373  0.477445
    # 5 -0.096186 -0.766024  0.702740 -0.580853
    # 6  0.941851  1.474317 -0.065384 -0.779173
    # 7 -0.556754 -0.535569 -0.353260 -0.839585
    # 8  0.340264 -1.576842  1.251407  1.703995
  • 相关阅读:
    阅读 图解HTTP ,读书笔记
    javascript 红宝书笔记之操作日期
    设计模式之抽象工厂模式
    设计模式之工厂方法模式
    数据库知识点③
    设计模式之装饰者模式
    设计模式之观察者模式
    心理控制方法——阅读Notes
    使用PL/SQL编写存储过程访问数据库
    《认知盈余》——阅读感受与体会
  • 原文地址:https://www.cnblogs.com/xkxf/p/8367206.html
Copyright © 2011-2022 走看看