zoukankan      html  css  js  c++  java
  • 算法笔记 #007# Backtracking

    留着备用。

    题目描述和代码参考:https://www.geeksforgeeks.org/8-queen-problem/

    NQueenProblem(js代码):

    class NQueenProblem {
        static printSolution(board, numOfSolutions) {
            console.log(`第${numOfSolutions}种解法:`);
            for (let i = 0; i != board.length; ++i) {
                let temp = "";
                for (let j = 0; j != board.length; ++j) {
                    temp += board[i][j] + " ";
                }
                console.log(temp);
            }
        }
        
        static solve(num) {
            let numOfSolutions = 0;
            let board = CommonUtil.zeros(num, num);
            
            let isSafe = function(col, row) {
                // 检查该行左边有没皇后
                for (let i = 0; i != col; ++i) {
                    if (board[i][row] == 1) return false;
                }
                // 检查左上角
                for (let i = col - 1, j = row - 1; i >= 0 && j >= 0; --i, --j) {
                    if (board[i][j] == 1) return false;                
                }
                // 检查左下角
                for (let i = col - 1, j = row + 1; i >= 0 && j < num; --i, ++j) {
                    if (board[i][j] == 1) return false;                 
                }
                return true;
            };            
            
            let placeNextQueen = function(col) {
                // 如果所有皇后都放置好了,说明找到了一种方案
                if (col >= num) {
                    NQueenProblem.printSolution(board, ++numOfSolutions);
                    return;
                }                
                
                // 在可以放的地方试探
                for (let i = 0; i != num; ++i) {
                    if (isSafe(col, i)) {
                        board[col][i] = 1;
                        placeNextQueen(col + 1);
                        board[col][i] = 0;
                    }
                }
            };
            
            placeNextQueen(0);
        }
        
        static run(data) {
            NQueenProblem.solve(Number(data));    
            // Number(data)指的是皇后的数量
        }    
    }

    /

    mColoringProblem(js代码):

    class mColoringProblem {
        static printSolution(colorOfPoint, numOfSolutions) {
            console.log(`第${numOfSolutions}种解法:`);
            console.log(colorOfPoint);
            // 例如输出[1, 2, 3, 4, 1],表示第1个点第1种颜色,
            // 表示第2个点第2种颜色,表示第3个点第3种颜色,
            // 表示第4个点第4种颜色,表示第5个点第1种颜色,
        }
        
        static solve(graph, m) {
            let numOfSolutions = 0;
            let colorOfPoint = graph.map(() => 0); // 存储每个点的着色情况
    
            let isSafe = function(pointId, colorId) {
                // 检查会不会和相邻的已着色点冲突
                for (let i = 0; i != pointId; ++i) {
                    if (graph[pointId][i] == 1 && colorId == colorOfPoint[i]) {
                        return false;
                    }
                }
                return true;
            };            
            
            let coloringNext = function(pointId) {
                // 如果所有点都已经着色,说明找到了一种方案
                if (pointId >= graph.length) {
                    mColoringProblem.printSolution(colorOfPoint, ++numOfSolutions);
                    return;
                }                
                
                // 尝试着色
                for (let i = 1; i <= m; ++i) {
                    if (isSafe(pointId, i)) {
                        colorOfPoint[pointId] = i;
                        coloringNext(pointId + 1);
                        colorOfPoint[pointId] = 0;
                    }
                }
            };
            
            coloringNext(0);
        }
    
        static run(data) {
            // 输入格式:首个数字表示着色点个数
            // 之后是一个描述无向图的邻接矩阵,
            // 最后是颜色数量
            data = CommonUtil.handleData(data);
            let num = data[0];
            let graph = CommonUtil.zeros(num, num);
            let k = 0;
            for (let i = 0; i != num; ++i) {
                for (let j = 0; j != num; ++j) {
                    graph[i][j] = data[++k];
                }
            }
            let m = data[k + 1];
            
            // console.log(num, graph, m);
            mColoringProblem.solve(graph, m);
        }    
    }
  • 相关阅读:
    Logistic回归
    朴素贝叶斯
    决策树
    K-邻近(KNN)算法
    快速排序
    归并排序
    希尔排序
    插入排序
    选择排序
    浅谈系统服务分发
  • 原文地址:https://www.cnblogs.com/xkxf/p/9998247.html
Copyright © 2011-2022 走看看