Description
In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swapping two adjacent sequence elements until the sequence is sorted in ascending order. For the input sequence
9 1 0 5 4 ,
Ultra-QuickSort produces the output
0 1 4 5 9 .
Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.
Ultra-QuickSort produces the output
Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.
Input
The input contains several test cases. Every test case begins with a line that contains a single integer n < 500,000 -- the length of the input sequence. Each of the the following n lines contains a single integer 0 ≤ a[i] ≤ 999,999,999, the i-th input sequence element. Input is terminated by a sequence of length n = 0. This sequence must not be processed.
Output
For every input sequence, your program prints a single line containing an integer number op, the minimum number of swap operations necessary to sort the given input sequence.
Sample Input
5
9
1
0
5
4
3
1
2
3
0
Sample Output
6
0
此题就是要求逆序数,所以用归本排序较好。
#include<iostream>
using namespace std;
long long cnt;
void merge(int array[],int left,int mid,int right)
{
int* temp=new int[right-left+1];
int i,j,p;
for(i=left,j=mid+1,p=0;i<=mid&&j<=right;p++)
{
if(array[i]<=array[j])temp[p]=array[i++];
else
{
temp[p]=array[j++];cnt+=(mid-i+1);
}
}
while(i<=mid)temp[p++]=array[i++];
while(j<=right)temp[p++]=array[j++];
for(i=left,p=0;i<=right;i++)array[i]=temp[p++];
delete temp;
}
void mergesort(int array[],int left,int right)
{
if(left==right)array[left]=array[right];
else
{
int mid=(left+right)/2;
mergesort(array,left,mid);
mergesort(array,mid+1,right);
merge(array,left,mid,right);
}
}
int main()
{
int n,array[500005];
while(cin>>n,n)
{
cnt=0;
for(int i=0;i<n;i++)
cin>>array[i];
mergesort(array,0,n-1);
cout<<cnt<<endl;
}
return 0;
}