zoukankan      html  css  js  c++  java
  • Program D--贪心-区间覆盖

    Given several segments of line (int the X axis) with coordinates [Li,Ri]. You are to choose the minimal amount of them, such they would completely cover the segment [0,M].

    Input

    The first line is the number of test cases, followed by a blank line. Each test case in the input should contains an integer M (1 ≤ M ≤ 5000), followed by pairs

    “Li Ri”( |Li|,|Ri|≤ 50000, i ≤ 100000), each on a separate line. Each test case of input is terminated by pair‘ 0 0’. Each test case will be separated by a single line.

    Output

    For each test case, in the first line of output your programm should print the minimal number of line segments which can cover segment [0,M]. In the

    following lines, the coordinates of segments, sorted by their left end (Li), should be printed in the same format as in the input. Pair ‘0 0’ should not be

    printed. If [0,M] can not be covered by given line segments, your programm should print ‘0’ (without quotes). Print a blank line between the outputs for two

    consecutive test cases.

    Sample Input

    2

    1 -1 0 -5 -3 2 5 0 0

    1 -1 0 0 1 0 0

    Sample Output

    0

    1 0 1

    题意:给定一个M,和一些区间[Li,Ri],要选出几个区间能完全覆盖住[0,M]区间,要求数量最少,如果不能覆盖输出0.

       

    思路:贪心的思想,把区间按Ri从大到小排序,然后遇到一个满足的[Li,Ri],就更新缩小区间,直到完全覆盖。

       

    注意[Li,Ri]只有满足Li小于等于且Ri大于当前覆盖区间左端这个条件。才能选中。

    代码如下:

      

      

    #include <iostream>
    #include <cstdio>
    #include <algorithm>
    #include <cmath>
    using namespace std;
    struct node{
    	int x,y;
    }a[100001],b[100001];
    int cmp(node a,node b)
    {
    	return a.x<b.x;
    }
    int main()
    {
    	int t;
    	int m,n,p,max,sum,i,f,pmax,begin,end;
    	scanf("%d",&t);
    	while(t--)
    	{
    		scanf("%d",&m);
    		n=0;
    		while(scanf("%d%d",&begin,&end))
    		{
    			if(begin==0&&end==0)
    				break;
    			if(end>=0)
    			{
    				a[n].x=begin;
    				a[n].y=end;
    				++n;
    			}
    
    		}
    		sort(a,a+n,cmp);
    		if(a[0].x>0)
    			printf("0
    ");
    		else
    		{
    			p=0;
    			max=0;
    			sum=1;
    			while(p+1<n&&a[p+1].x<=0)
    			{
    				++p;
    				if(a[p].y>a[max].y)
    					max=p;
    			}
    			p=max;
    			b[1].x=a[p].x;
    			b[1].y=a[p].y;
    			while(p<n&&b[sum].y<m)
    			{
    				f=1;
    				pmax=max;
    				while(p+1<n&&a[p+1].x<=a[max].y)
    				{
    					f=0;
    					++p;
    					if(a[p].y>a[pmax].y)
    						pmax=p;
    				}
    				if(f)
    					break;
    				max=pmax;
    				++sum;
    				b[sum].x=a[max].x;
    				b[sum].y=a[max].y;
    
    			}
    			if(b[sum].y>=m)
    			{
    				printf("%d
    ",sum);
    				for(i=1;i<=sum;i++)
    					printf("%d %d
    ",b[i].x,b[i].y);
    			}
    			else
    				printf("0
    ");
    		}
    		if(t)
    			printf("
    ");
    	}
    	return 0;
    }
    
  • 相关阅读:
    ACM算法
    过度拟合的问题
    多类分类:一对多
    先进的优化
    简化成本函数和梯度下降
    对数回归的成本函数
    决策边界
    假设表示
    分类
    hdu1574 I Hate It (线段树,查询区间最大值)
  • 原文地址:https://www.cnblogs.com/xl1164191281/p/4716315.html
Copyright © 2011-2022 走看看