zoukankan      html  css  js  c++  java
  • WebRTC源码分析--RateStatistics

    RateStatistics这个类的作用为记录一个时间窗口内的速率值,并返回当前时间区域内的码率值。

    首先引入一个桶的定义:

    struct Bucket {
        explicit Bucket(int64_t timestamp);
        int64_t sum;  // Sum of all samples in this bucket.
        int num_samples;          // Number of samples in this bucket.
        const int64_t timestamp;  // Timestamp this bucket corresponds to.
    };
    

    每毫秒维护一个桶。RateStatistics类内部就有一个按时间顺序排列的桶队列:

    // All buckets within the time window, ordered by time.
      std::deque<Bucket> buckets_;
    

    RateStatistics::Update是最重要的接口,用于更新当前速率。

    
    // 移除不在时间窗口内的桶
    void RateStatistics::EraseOld(int64_t now_ms) {
      // New oldest time that is included in data set.
      const int64_t new_oldest_time = now_ms - current_window_size_ms_ + 1;
    
      // Loop over buckets and remove too old data points.
      while (!buckets_.empty() && buckets_.front().timestamp < new_oldest_time) {
        const Bucket& oldest_bucket = buckets_.front();
        RTC_DCHECK_GE(accumulated_count_, oldest_bucket.sum);
        RTC_DCHECK_GE(num_samples_, oldest_bucket.num_samples);
        accumulated_count_ -= oldest_bucket.sum;
        num_samples_ -= oldest_bucket.num_samples;
        buckets_.pop_front();
        // This does not clear overflow_ even when counter is empty.
        // TODO(https://bugs.webrtc.org/11247): Consider if overflow_ can be reset.
      }
    }
    
    
    void RateStatistics::Update(int64_t count, int64_t now_ms) {
      RTC_DCHECK_GE(count, 0);
    
      //移除超过时间窗口的桶
      EraseOld(now_ms);
      if (first_timestamp_ == -1) {
        first_timestamp_ = now_ms;
      }
    
      if (buckets_.empty() || now_ms != buckets_.back().timestamp) {
        //当前更新时间比上次更新时间还早,属于异常情况,更换now_ms
        if (!buckets_.empty() && now_ms < buckets_.back().timestamp) {
          RTC_LOG(LS_WARNING) << "Timestamp " << now_ms
                              << " is before the last added "
                                 "timestamp in the rate window: "
                              << buckets_.back().timestamp << ", aligning to that.";
          now_ms = buckets_.back().timestamp;
        }
        //没有现有的桶,或者当前毫秒没有记录时,创建对应当前时间的桶
        buckets_.emplace_back(now_ms);
      }
      Bucket& last_bucket = buckets_.back();
      //更新对应时间的桶中的统计数据
      last_bucket.sum += count;
      ++last_bucket.num_samples;
    
      //防止accumulated_count_溢出
      if (std::numeric_limits<int64_t>::max() - accumulated_count_ > count) {
        accumulated_count_ += count;
      } else {
        overflow_ = true;
      }
      ++num_samples_;
    }
    
    

    RateStatistics::Update其实逻辑很简单,就是不断的维护时间窗口内的桶,以及维护所有桶中的sample数量和count大小。

    每1ms维护一个桶

    RateStatistics::Rate用于向外提供查询当前速率的接口,而这个速率只在被调用时才计算:

    absl::optional<int64_t> RateStatistics::Rate(int64_t now_ms) const {
      // Yeah, this const_cast ain't pretty, but the alternative is to declare most
      // of the members as mutable...
      // 移除旧的桶
      const_cast<RateStatistics*>(this)->EraseOld(now_ms);
    
      int active_window_size = 0;
      if (first_timestamp_ != -1) {
        //距离第一次的记录的时间间隔超过了当前的时间窗口,那么计算的周期就选当前的窗口
        if (first_timestamp_ <= now_ms - current_window_size_ms_) {
          // Count window as full even if no data points currently in view, if the
          // data stream started before the window.
          active_window_size = current_window_size_ms_;
        } else {
          // 当前的记录不足当前时间窗口,那么按照实际的时间计算时间周期
          // Size of a single bucket is 1ms, so even if now_ms == first_timestmap_
          // the window size should be 1.
          active_window_size = now_ms - first_timestamp_ + 1;
        }
      }
    
      // If window is a single bucket or there is only one sample in a data set that
      // has not grown to the full window size, or if the accumulator has
      // overflowed, treat this as rate unavailable.
      // 当还没有sample,或者有效时间周期小于等于1,或者只有一条sample并且尚未经过一个完整的时间窗口,或者已经统计溢出,都任务非法,返回null
      if (num_samples_ == 0 || active_window_size <= 1 ||
          (num_samples_ <= 1 &&
           rtc::SafeLt(active_window_size, current_window_size_ms_)) ||
          overflow_) {
        return absl::nullopt;
      }
    
      // 使用 ((当前窗口内的所有计数/有效时间窗口) *  scale_ + 0.5) 作为速率返回
      float scale = static_cast<float>(scale_) / active_window_size;
      float result = accumulated_count_ * scale + 0.5f;
    
      // Better return unavailable rate than garbage value (undefined behavior).
      if (result > static_cast<float>(std::numeric_limits<int64_t>::max())) {
        return absl::nullopt;
      }
      return rtc::dchecked_cast<int64_t>(result);
    }
    

    总结

    • 速率统计是计算按照当前设置的时间窗口范围内的平均速率;
    • 计算公式: ((当前窗口内的所有count/有效时间窗口) * scale_ + 0.5), 其中scale_
      • 采用scale = kBpsScale(8000.0f)且count单位为Byte,Rate单位为bps;
      • 采用scale = 1,且count单位为Byte,Rate单位为KBps。
  • 相关阅读:
    hdu1686 最大匹配次数 KMP
    洛谷 P5057 [CQOI2006]简单题(树状数组)
    洛谷 P5020 货币系统
    洛谷 P5019 铺设道路(差分)
    洛谷 P1119 灾后重建(Floyd)
    洛谷 P1082 同余方程(同余&&exgcd)
    洛谷 P2384 最短路
    洛谷 P3371 【模板】单源最短路径(弱化版) && dijkstra模板
    洛谷 P1387 最大正方形
    洛谷 P2866 [USACO06NOV]糟糕的一天Bad Hair Day
  • 原文地址:https://www.cnblogs.com/xl2432/p/14082643.html
Copyright © 2011-2022 走看看