Tensorflow之RNN,LSTM
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ tensorflow之RNN 循环神经网络做手写数据集分类 """ import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data #设置随机数来比较两种计算结果 tf.set_random_seed(1) #导入手写数据集 mnist = input_data.read_data_sets('MNIST_data', one_hot=True) #设置参数 lr = 0.001 training_iters = 100000 batch_size = 128 n_inputs = 28 # MNIST 输入为图片(img shape: 28*28)对应到图片像素的一行 n_steps = 28 # time steps 对应到图片有多少列 n_hidden_units = 128 # 隐藏层神经元个数 n_classes = 10 # MNIST分类结果为10 #定义权重 weights = { #(28,128) 'in': tf.Variable(tf.random_normal([n_inputs, n_hidden_units])) #(128,10) 'out': tf.Variable(tf.random_normal([n_hidden_units, n_classes])) } #定义bias biases = { # (128, ) 'in': tf.Variable(tf.constant(0.1, shape=[n_hidden_units, ])), # (10, ) 'out': tf.Variable(tf.constant(0.1, shape=[n_classes, ])) } def RNN(X, weights, biases): #作为cell输入的隐藏层 ###################################################### #输入层 #将输入shape从X三维输入变为二维(128 batch * 28 steps, 128 hidden) X = tf.reshape(X, [-1,n_inputs]) #隐藏层 # X_in = (128 batch * 28 steps, 128 hidden) X_in = tf.matmul(X, weights['in']) + biases['in'] # 传给cell时需要将二维转为三维X_in ==> (128 batch, 28 steps, 128 hidden) X_in = tf.reshape(X_in, [-1, n_steps, n_hidden_units]) #cell ####################################################### #LSTM cell forget_bias=1.0表示最开始学习我们不希望忘掉任何state,
#state_is_tuple=True这个为true表示记录每个时间点的cell状态和输出值,以后会默认为true cell = tf.contrib.rnn.BasicLSTMCell(n_hidden_units,forget_bias=1.0,state_is_tuple=True) #将lstm cell 分成两部分(c_state, h_state),对应到lstm一个是主线c_state(没有cell的遗忘),
#支线是h_state(有cell的遗忘),zero_state将每个t时间的cell初始化为0, init_state = cell.zero_state(batch_size, dtype=tf.float32) #outputs为lstm所有输出结果包括每个时刻cell的state,和输出值,final_state为最后的结果,
#time_major参数表示时间序列的位置是否为输入数据的第一个维度,由于我们是在第二个维度,所以为false outputs, final_state = tf.nn.dynamic_rnn(cell, X_in, initial_state=init_state, time_major=False) #1.将隐藏层的输出作为最后结果,只有一个结果 #results = tf.matmul(final_state[1], weights['out']) + biases['out'] #2.将每一步的结果输出到lists,在对outputs unstack后[1,0, 2]是将outputs list中每个tuple中元素对应展开 tf.unstack(tf.transpose(outputs, [1, 0, 2])) results = tf.matmul(outputs[-1], weights['out']) + biases['out'] # shape = (128, 10) return results pred = RNN(x, weights, biases) cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y)) train_op = tf.train.AdamOptimizer(lr).minimize(cost) correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1)) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) with tf.Session() as sess: init = tf.global_variables_initializer() sess.run(init) step = 0 while step * batch_size < training_iters: batch_xs, batch_ys = mnist.train.next_batch(batch_size) batch_xs = batch_xs.reshape([batch_size, n_steps, n_inputs]) sess.run([train_op], feed_dict={ x: batch_xs, y: batch_ys, }) if step % 20 == 0: print(sess.run(accuracy, feed_dict={ x: batch_xs, y: batch_ys, })) step += 1