zoukankan      html  css  js  c++  java
  • PyTorch之Classification

    #!/usr/bin/env python2
    # -*- coding: utf-8 -*-
    
    import torch
    from torch.autograd import Variable
    import torch.nn.functional as F
    import matplotlib.pyplot as plt
    
    #创建数据
    n_data = torch.ones(100,2)
    #类型0
    x0 = torch.normal(2*n_data, 1) #x data (tensor), shape=(100, 2)
    y0 = torch.zeros(100)          #y data (tensor), shape=(100, 1)
    #类型1
    x1 = torch.normal(-2*n_data, 1)#x data (tensor), shape=(100, 1)
    y1 = torch.zeros(100)          #y data (tensor), shape=(100, 1)
    
    # 注意 x, y 数据的数据形式是一定要像下面一样 (torch.cat 是在合并数据)
    x = torch.cat((x0, x1), 0).type(torch.FloatTensor)# FloatTensor = 32-bit floating
    y = torch.cat((y0,y1),).type(torch.LongTensor)    # LongTensor = 64-bit integer
    
    #torch 只能在Variable 上训练, 所以把它们变成 Variable
    x, y = Variable(x), Variable(y)
    
    plt.scatter(x.data.numpy()[:,0], x.data.numpy()[:,1], c = y.data.numpy(),
                s=100, lw=0, cmap='RdYlGn')
    # plt.show()
    
    #建立神经网络
    class Net(torch.nn.Module):
        def __init__(self, n_feature, n_hidden, n_output):
            super(Net, self).__init__()
            self.hidden =  torch.nn.Linear(n_feature, n_hidden)
            self.out = torch.nn.Linear(n_hidden, n_output)
    
        def forward(self, x):
            x = F.relu(self.hidden(x))
            x = self.out(x)
            return x
    
    net = Net(n_feature=2, n_hidden=10, n_output=2)
    print net
    """
    Net (
      (hidden): Linear (2 -> 10)
      (out): Linear (10 -> 2)
    )
    """
    
    #训练网络
    #传入net的所有参数和学习率
    optimizer = torch.optim.SGD(net.parameters(), lr=0.02)
    #算误差时, 真实值不是one-hot 形式, 而是1D Tensor, (batch,)
    #但是预测值是2D tensor(batch, n_classes)
    loss_func = torch.nn.CrossEntropyLoss()
    
    
    plt.ion()
    plt.show()
    
    for t in range(100):
        #放入训练数据x, 输出前向分析值
        out = net(x)
        #计算误差
        loss = loss_func(out, y)
    
        #清空上一步残余更新的参数值
        optimizer.zero_grad()
        #误差反向传播, 计算参数更新值
        loss.backward()
        #将参数更新值施加到net的parameteres
        optimizer.step()
    
        if t % 2 ==0:
            plt.cla()
            #softmax输出最大概率是预测值
            prediction = torch.max(F.softmax(out),1)[1]
            #np.squeeze() 可以直接进行某一维度维度压缩
            pred_y = prediction.data.numpy().squeeze()
            target_y = y.data.numpy()
            plt.scatter(x.data.numpy()[:,0], x.data.numpy()[:, 1], c=pred_y, s = 100, lw = 0, cmap='RdYlGn')
            accuracy = sum(pred_y == target_y)/200
            plt.text(1.5, -4, 'Accuracy=%.2f'%accuracy, fontdict={'size': 20, 'color': 'red'})
        plt.ioff()#停止画图
        plt.show()
  • 相关阅读:
    MEF 编程指南(十一):查询 CompositionContainer
    MEF 编程指南(十):重组
    MEF 编程指南(九):部件生命周期
    MEF 编程指南(八):过滤目录
    MEF 编程指南(七):使用目录
    MEF 编程指南(六):导出和元数据
    MEF 编程指南(五):延迟导出
    MEF 编程指南(四):声明导入
    MEF 编程指南(三):声明导出
    MEF 编程指南(二):定义可组合部件和契约
  • 原文地址:https://www.cnblogs.com/xmeo/p/7260538.html
Copyright © 2011-2022 走看看