zoukankan      html  css  js  c++  java
  • [ML]keras和tensorflow波士顿房价预测模型

    from keras.datasets import boston_housing
    from keras.models import Sequential
    from keras.layers import Dense,BatchNormalization,Dropout,Reshape,Flatten
    from keras.layers.convolutional import Conv2D,MaxPooling2D,Conv1D,MaxPooling1D
    import numpy as np
    import os
    
    (x_train, y_train), (x_test, y_test) = boston_housing.load_data()
    
    def build0():
        model=Sequential(name='boston')
        model.add(BatchNormalization(input_shape=(13,)))
        model.add(Dropout(0.5))
        model.add(Dense(1))
        return model
    
    def build1():
        model=Sequential(name='boston')
        model.add(BatchNormalization(input_shape=(13,)))
        model.add(Dense(13))
        model.add(Dropout(0.5))
        model.add(Dense(1))
        return model
    
    def build2():
        model=Sequential(name='boston')
        model.add(BatchNormalization(input_shape=(13,)))
        model.add(Dense(13,activation='tanh'))
        model.add(Dropout(0.5))
        model.add(Dense(1))
        return model
    
    def build3():
        model=Sequential(name='boston')
        model.add(BatchNormalization(input_shape=(13,)))
        model.add(Dense(13,activation='sigmoid'))
        model.add(Dropout(0.5))
        model.add(Dense(1))
        return model
    
    def build4():
        model=Sequential(name='boston')
        model.add(BatchNormalization(input_shape=(13,)))
        model.add(Reshape((13,1)))
        model.add(Conv1D(filters=13,strides=1,padding='same',kernel_size=2,activation='sigmoid'))
        model.add(Conv1D(filters=26, strides=1, padding='same', kernel_size=2, activation='sigmoid'))
        model.add(MaxPooling1D(pool_size=2,strides=1,padding='same'))
        model.add(Conv1D(filters=52, strides=1, padding='same', kernel_size=2, activation='sigmoid'))
        model.add(Conv1D(filters=104, strides=1, padding='same', kernel_size=2, activation='sigmoid'))
        model.add(MaxPooling1D(pool_size=2, strides=1, padding='same'))
        model.add(Flatten())
        model.add(Dropout(0.5))
        model.add(Dense(1))
        return model
    
    def build5():
        model = Sequential(name='boston')
        model.add(BatchNormalization(input_shape=(13,)))
        model.add(Reshape((13, 1,1)))
        model.add(Conv2D(filters=13, strides=1, padding='same', kernel_size=1, activation='sigmoid'))
        model.add(Conv2D(filters=26, strides=2, padding='same', kernel_size=2, activation='sigmoid'))
        model.add(MaxPooling2D(pool_size=2, strides=1, padding='same'))
        model.add(Conv2D(filters=52, strides=1, padding='same', kernel_size=1, activation='sigmoid'))
        model.add(Conv2D(filters=104, strides=2, padding='same', kernel_size=2, activation='sigmoid'))
        model.add(MaxPooling2D(pool_size=2, strides=1, padding='same'))
        model.add(Flatten())
        model.add(Dropout(0.5))
        model.add(Dense(1))
        return model
    
    for i in range(5,6):
        model=eval("build"+str(i)+"()")
        model.compile('adam','mae')#3.0895
        history=model.fit(x_train,y_train,batch_size=404,epochs=10000,verbose=1,validation_data=(x_test,y_test))
        print(history.history)
    
        f=open("result.txt",'a')
        f.write(str(history.history['val_loss'][-1])+"
    ")
        f.close()

    其中build5方法预测最准确mae loss最小

    tensorflow

    import tensorflow as tf
    import numpy as np
    from keras.datasets import boston_housing
    
    (x_train, y_train), (x_test, y_test) = boston_housing.load_data()
    
    
    X=tf.placeholder('float32',[None,13])
    y=tf.placeholder('float32',[None])
    
    keep_prob=tf.placeholder('float32')
    
    normal1=tf.layers.batch_normalization(X)
    
    reshape1=tf.reshape(normal1,shape=(-1,13,1,1))
    conv1_1=tf.layers.conv2d(reshape1,filters=13,strides=1,padding='same',kernel_size=1,activation=tf.nn.sigmoid)
    conv1_2=tf.layers.conv2d(conv1_1,filters=26,strides=2,padding='same',kernel_size=2,activation=tf.nn.sigmoid)
    pool1=tf.layers.max_pooling2d(conv1_2,pool_size=2,strides=1,padding='same')
    
    conv2_1=tf.layers.conv2d(pool1,filters=52,strides=1,padding='same',kernel_size=1,activation=tf.nn.sigmoid)
    conv2_2=tf.layers.conv2d(conv2_1,filters=104,strides=2,padding='same',kernel_size=2,activation=tf.nn.sigmoid)
    pool2=tf.layers.max_pooling2d(conv2_2,pool_size=2,strides=1,padding='same')
    
    reshape2=tf.reshape(pool2,shape=(-1,416))
    dropout1=tf.nn.dropout(reshape2,keep_prob=keep_prob)
    
    dense1=tf.layers.dense(dropout1,units=1)
    reshape3=tf.reshape(dense1,shape=(-1,))
    
    loss=tf.reduce_mean(tf.abs(y-reshape3))
    step=tf.train.AdamOptimizer(0.001).minimize(loss)
    
    
    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
    
        for i in range(30000):
            sess.run(step,feed_dict={X:x_train,y:y_train,keep_prob:0.5})
            # print(loss_val)
    
            loss_val=sess.run(loss,feed_dict={X:x_test,y:y_test,keep_prob:1})
            print(str(i)+"=>"+str(loss_val))
  • 相关阅读:
    【应试】数据通信与网络
    【应试】操作系统OS
    【笔记】 卷积
    【HDU 5920】 Ugly Problem
    【笔记】位运算
    【洛谷P1378】油滴扩展
    【洛谷 P1120】 小木棍[数据加强版]
    [codeforces]Round #538 (Div. 2) F. Please, another Queries on Array?
    [BZOJ]2563: 阿狸和桃子的游戏
    [BZOJ]4668: 冷战
  • 原文地址:https://www.cnblogs.com/xmxkkk/p/7575506.html
Copyright © 2011-2022 走看看