zoukankan      html  css  js  c++  java
  • 图像特征检测(Image Feature Detection)

    作者:王先荣
    前言
        图像特征提取是计算机视觉和图像处理中的一个概念。它指的是使用计算机提取图像信息,决定每个图像的点是否属于一个图像特征。本文主要探讨如何提取图像中的“角点”这一特征,及其相关的内容。而诸如直方图、边缘、区域等内容在前文中有所提及,请查看相关文章。OpenCv(EmguCv)中实现了多种角点特征的提取方法,包括:Harris角点、ShiTomasi角点、亚像素级角点、SURF角点、Star关键点、FAST关键点、Lepetit关键点等等,本文将逐一介绍如何检测这些角点。在此之前将会先介绍跟角点检测密切相关的一些变换,包括Sobel算子、拉普拉斯算子、Canny算子、霍夫变换。另外,还会介绍一种广泛使用而OpenCv中并未实现的SIFT角点检测,以及最近在OpenCv中实现的MSER区域检测。所要讲述的内容会很多,我这里尽量写一些需要注意的地方及实现代码,而参考手册及书本中有的内容将一笔带过或者不会提及。

    Sobel算子
        Sobel算子用多项式计算来拟合导数计算,可以用OpenCv中的cvSobel函数或者EmguCv中的Image<TColor,TDepth>.Sobel方法来进行计算。需要注意的是,xorder和yorder中必须且只能有一个为非零值,即只能计算x方向或者y反向的导数;如果将方形滤波器的宽度设置为特殊值CV_SCHARR(-1),将使用Scharr滤波器代替Sobel滤波器。
        使用Sobel滤波器的示例代码如下:

    Sobel算子
    //Sobel算子
    private string SobelFeatureDetect()
    {
    //获取参数
    int xOrder = int.Parse((string)cmbSobelXOrder.SelectedItem);
    int yOrder = int.Parse((string)cmbSobelYOrder.SelectedItem);
    int apertureSize = int.Parse((string)cmbSobelApertureSize.SelectedItem);
    if ((xOrder == 0 && yOrder == 0) || (xOrder != 0 && yOrder != 0))
    return "Sobel算子,参数错误:xOrder和yOrder中必须且只能有一个非零。\r\n";
    //计算
    Stopwatch sw = new Stopwatch();
    sw.Start();
    Image
    <Gray, Single> imageDest = imageSourceGrayscale.Sobel(xOrder, yOrder, apertureSize);
    sw.Stop();
    //显示
    pbResult.Image = imageDest.Bitmap;
    //释放资源
    imageDest.Dispose();
    //返回
    return string.Format("·Sobel算子,用时{0:F05}毫秒,参数(x方向求导阶数:{1},y方向求导阶数:{2},方形滤波器宽度:{3})\r\n", sw.Elapsed.TotalMilliseconds, xOrder, yOrder, apertureSize);
    }

     
    拉普拉斯算子
        拉普拉斯算子可以用作边缘检测;可以用OpenCv中的cvLaplace函数或者EmguCv中的Image<TColor,TDepth>.Laplace方法来进行拉普拉斯变换。需要注意的是:OpenCv的文档有点小错误,apertureSize参数值不能为CV_SCHARR(-1)。
        使用拉普拉斯变换的示例代码如下:

    拉普拉斯算子
    //拉普拉斯变换
    private string LaplaceFeatureDetect()
    {
    //获取参数
    int apertureSize = int.Parse((string)cmbLaplaceApertureSize.SelectedItem);
    //计算
    Stopwatch sw = new Stopwatch();
    sw.Start();
    Image
    <Gray, Single> imageDest = imageSourceGrayscale.Laplace(apertureSize);
    sw.Stop();
    //显示
    pbResult.Image = imageDest.Bitmap;
    //释放资源
    imageDest.Dispose();
    //返回
    return string.Format("·拉普拉斯变换,用时{0:F05}毫秒,参数(方形滤波器宽度:{1})\r\n", sw.Elapsed.TotalMilliseconds, apertureSize);
    }

     
    Canny算子
        Canny算子也可以用作边缘检测;可以用OpenCv中的cvCanny函数或者EmguCv中的Image<TColor,TDepth>.Canny方法来进行Canny边缘检测。所不同的是,Image<TColor,TDepth>.Canny方法可以用于检测彩色图像的边缘,但是它只能使用apertureSize参数的默认值3;
    而cvCanny只能处理灰度图像,不过可以自定义apertureSize。cvCanny和Canny的方法参数名有点点不同,下面是参数对照表。
    Image<TColor,TDepth>.Canny    CvInvoke.cvCanny
    thresh                                         lowThresh
    threshLinking                               highThresh
    3                                                apertureSize
    值得注意的是,apertureSize只能取3,5或者7,这可以在cvcanny.cpp第87行看到:

    aperture_size &= INT_MAX;
    if( (aperture_size & 1) == 0 || aperture_size < 3 || aperture_size > 7 )
    CV_ERROR( CV_StsBadFlag,
    "" );


    使用Canny算子的示例代码如下:

    Canny算子
    //Canny算子
    private string CannyFeatureDetect()
    {
    //获取参数
    double lowThresh = double.Parse(txtCannyLowThresh.Text);
    double highThresh = double.Parse(txtCannyHighThresh.Text);
    int apertureSize = int.Parse((string)cmbCannyApertureSize.SelectedItem);
    //计算
    Stopwatch sw = new Stopwatch();
    sw.Start();
    Image
    <Gray, Byte> imageDest = null;
    Image
    <Bgr, Byte> imageDest2 = null;
    if (rbCannyUseCvCanny.Checked)
    {
    imageDest
    = new Image<Gray, byte>(imageSourceGrayscale.Size);
    CvInvoke.cvCanny(imageSourceGrayscale.Ptr, imageDest.Ptr, lowThresh, highThresh, apertureSize);
    }
    else
    imageDest2
    = imageSource.Canny(new Bgr(lowThresh, lowThresh, lowThresh), new Bgr(highThresh, highThresh, highThresh));
    sw.Stop();
    //显示
    pbResult.Image = rbCannyUseCvCanny.Checked ? imageDest.Bitmap : imageDest2.Bitmap;
    //释放资源
    if (imageDest != null)
    imageDest.Dispose();
    if (imageDest2 != null)
    imageDest2.Dispose();
    //返回
    return string.Format("·Canny算子,用时{0:F05}毫秒,参数(方式:{1},阀值下限:{2},阀值上限:{3},方形滤波器宽度:{4})\r\n", sw.Elapsed.TotalMilliseconds, rbCannyUseCvCanny.Checked ? "cvCanny" : "Image<TColor, TDepth>.Canny", lowThresh, highThresh, apertureSize);
    }

    另外,在http://www.china-vision.net/blog/user2/15975/archives/2007/804.html有一种自动获取Canny算子高低阀值的方法,作者提供了用C语言实现的代码。我将其改写成了C#版本,代码如下:

    计算图像的自适应Canny算子阀值
    /// <summary>
    /// 计算图像的自适应Canny算子阀值
    /// </summary>
    /// <param name="imageSrc">源图像,只能是256级灰度图像</param>
    /// <param name="apertureSize">方形滤波器的宽度</param>
    /// <param name="lowThresh">阀值下限</param>
    /// <param name="highThresh">阀值上限</param>
    unsafe void AdaptiveFindCannyThreshold(Image<Gray, Byte> imageSrc, int apertureSize, out double lowThresh, out double highThresh)
    {
    //计算源图像x方向和y方向的1阶Sobel算子
    Size size = imageSrc.Size;
    Image
    <Gray, Int16> imageDx = new Image<Gray, short>(size);
    Image
    <Gray, Int16> imageDy = new Image<Gray, short>(size);
    CvInvoke.cvSobel(imageSrc.Ptr, imageDx.Ptr,
    1, 0, apertureSize);
    CvInvoke.cvSobel(imageSrc.Ptr, imageDy.Ptr,
    0, 1, apertureSize);
    Image
    <Gray, Single> image = new Image<Gray, float>(size);
    int i, j;
    DenseHistogram hist
    = null;
    int hist_size = 255;
    float[] range_0 = new float[] { 0, 256 };
    double PercentOfPixelsNotEdges = 0.7;
    //计算边缘的强度,并保存于图像中
    float maxv = 0;
    float temp;
    byte* imageDataDx = (byte*)imageDx.MIplImage.imageData.ToPointer();
    byte* imageDataDy = (byte*)imageDy.MIplImage.imageData.ToPointer();
    byte* imageData = (byte*)image.MIplImage.imageData.ToPointer();
    int widthStepDx = imageDx.MIplImage.widthStep;
    int widthStepDy = widthStepDx;
    int widthStep = image.MIplImage.widthStep;
    for (i = 0; i < size.Height; i++)
    {
    short* _dx = (short*)(imageDataDx + widthStepDx * i);
    short* _dy = (short*)(imageDataDy + widthStepDy * i);
    float* _image = (float*)(imageData + widthStep * i);
    for (j = 0; j < size.Width; j++)
    {
    temp
    = (float)(Math.Abs(*(_dx + j)) + Math.Abs(*(_dy + j)));
    *(_image + j) = temp;
    if (maxv < temp)
    maxv
    = temp;
    }
    }
    //计算直方图
    range_0[1] = maxv;
    hist_size
    = hist_size > maxv ? (int)maxv : hist_size;
    hist
    = new DenseHistogram(hist_size, new RangeF(range_0[0], range_0[1]));
    hist.Calculate
    <Single>(new Image<Gray, Single>[] { image }, false, null);
    int total = (int)(size.Height * size.Width * PercentOfPixelsNotEdges);
    double sum = 0;
    int icount = hist.BinDimension[0].Size;
    for (i = 0; i < icount; i++)
    {
    sum
    += hist[i];
    if (sum > total)
    break;
    }
    //计算阀值
    highThresh = (i + 1) * maxv / hist_size;
    lowThresh
    = highThresh * 0.4;
    //释放资源
    imageDx.Dispose();
    imageDy.Dispose(); image.Dispose();
    hist.Dispose();
    }

     
    霍夫变换
        霍夫变换是一种在图像中寻找直线、圆及其他简单形状的方法,在OpenCv中实现了霍夫线变换和霍夫圆变换。值得注意的地方有以下几点:(1)HoughLines2需要先计算Canny边缘,然后再检测直线;(2)HoughLines2计算结果的获取随获取方式的不同而不同;(3)HoughCircles检测结果似乎不正确。
        使用霍夫变换的示例代码如下所示:

    霍夫变换
    //霍夫线变换
    private string HoughLinesFeatureDetect()
    {
    //获取参数
    HOUGH_TYPE method = rbHoughLinesSHT.Checked ? HOUGH_TYPE.CV_HOUGH_STANDARD : (rbHoughLinesPPHT.Checked ? HOUGH_TYPE.CV_HOUGH_PROBABILISTIC : HOUGH_TYPE.CV_HOUGH_MULTI_SCALE);
    double rho = double.Parse(txtHoughLinesRho.Text);
    double theta = double.Parse(txtHoughLinesTheta.Text);
    int threshold = int.Parse(txtHoughLinesThreshold.Text);
    double param1 = double.Parse(txtHoughLinesParam1.Text);
    double param2 = double.Parse(txtHoughLinesParam2.Text);
    MemStorage storage
    = new MemStorage();
    int linesCount = 0;
    StringBuilder sbResult
    = new StringBuilder();
    //计算,先运行Canny边缘检测(参数来自Canny算子属性页),然后再用计算霍夫线变换
    double lowThresh = double.Parse(txtCannyLowThresh.Text);
    double highThresh = double.Parse(txtCannyHighThresh.Text);
    int apertureSize = int.Parse((string)cmbCannyApertureSize.SelectedItem);
    Image
    <Gray, Byte> imageCanny = new Image<Gray, byte>(imageSourceGrayscale.Size);
    CvInvoke.cvCanny(imageSourceGrayscale.Ptr, imageCanny.Ptr, lowThresh, highThresh, apertureSize);
    Stopwatch sw
    = new Stopwatch();
    sw.Start();
    IntPtr ptrLines
    = CvInvoke.cvHoughLines2(imageCanny.Ptr, storage.Ptr, method, rho, theta, threshold, param1, param2);
    Seq
    <LineSegment2D> linesSeq = null;
    Seq
    <PointF> linesSeq2 = null;
    if (method == HOUGH_TYPE.CV_HOUGH_PROBABILISTIC)
    linesSeq
    = new Seq<LineSegment2D>(ptrLines, storage);
    else
    linesSeq2
    = new Seq<PointF>(ptrLines, storage);
    sw.Stop();
    //显示
    Image<Bgr, Byte> imageResult = imageSourceGrayscale.Convert<Bgr, Byte>();
    if (linesSeq != null)
    {
    linesCount
    = linesSeq.Total;
    foreach (LineSegment2D line in linesSeq)
    {
    imageResult.Draw(line,
    new Bgr(255d, 0d, 0d), 4);
    sbResult.AppendFormat(
    "{0}-{1},", line.P1, line.P2);
    }
    }
    else
    {
    linesCount
    = linesSeq2.Total;
    foreach (PointF line in linesSeq2)
    {
    float r = line.X;
    float t = line.Y;
    double a = Math.Cos(t), b = Math.Sin(t);
    double x0 = a * r, y0 = b * r;
    int x1 = (int)(x0 + 1000 * (-b));
    int y1 = (int)(y0 + 1000 * (a));
    int x2 = (int)(x0 - 1000 * (-b));
    int y2 = (int)(y0 - 1000 * (a));
    Point pt1
    = new Point(x1, y1);
    Point pt2
    = new Point(x2, y2);
    imageResult.Draw(
    new LineSegment2D(pt1, pt2), new Bgr(255d, 0d, 0d), 4);
    sbResult.AppendFormat(
    "{0}-{1},", pt1, pt2);
    }
    }
    pbResult.Image
    = imageResult.Bitmap;
    //释放资源
    imageCanny.Dispose();
    imageResult.Dispose();
    storage.Dispose();
    //返回
    return string.Format("·霍夫线变换,用时{0:F05}毫秒,参数(变换方式:{1},距离精度:{2},弧度精度:{3},阀值:{4},参数1:{5},参数2:{6}),找到{7}条直线\r\n{8}",
    sw.Elapsed.TotalMilliseconds, method.ToString(
    "G"), rho, theta, threshold, param1, param2, linesCount, linesCount != 0 ? (sbResult.ToString() + "\r\n") : "");
    }

    //霍夫圆变换
    private string HoughCirclesFeatureDetect()
    {
    //获取参数
    double dp = double.Parse(txtHoughCirclesDp.Text);
    double minDist = double.Parse(txtHoughCirclesMinDist.Text);
    double param1 = double.Parse(txtHoughCirclesParam1.Text);
    double param2 = double.Parse(txtHoughCirclesParam2.Text);
    int minRadius = int.Parse(txtHoughCirclesMinRadius.Text);
    int maxRadius = int.Parse(txtHoughCirclesMaxRadius.Text);
    StringBuilder sbResult
    = new StringBuilder();
    //计算
    Stopwatch sw = new Stopwatch();
    sw.Start();
    CircleF[][] circles
    = imageSourceGrayscale.HoughCircles(new Gray(param1), new Gray(param2), dp, minDist, minRadius, maxRadius);
    sw.Stop();
    //显示
    Image<Bgr, Byte> imageResult = imageSourceGrayscale.Convert<Bgr, Byte>();
    int circlesCount = 0;
    foreach (CircleF[] cs in circles)
    {
    foreach (CircleF circle in cs)
    {
    imageResult.Draw(circle,
    new Bgr(255d, 0d, 0d), 4);
    sbResult.AppendFormat(
    "圆心{0}半径{1},", circle.Center, circle.Radius);
    circlesCount
    ++;
    }
    }
    pbResult.Image
    = imageResult.Bitmap;
    //释放资源
    imageResult.Dispose();
    //返回
    return string.Format("·霍夫圆变换,用时{0:F05}毫秒,参数(累加器图像的最小分辨率:{1},不同圆之间的最小距离:{2},边缘阀值:{3},累加器阀值:{4},最小圆半径:{5},最大圆半径:{6}),找到{7}个圆\r\n{8}",
    sw.Elapsed.TotalMilliseconds, dp, minDist, param1, param2, minRadius, maxRadius, circlesCount, sbResult.Length
    > 0 ? (sbResult.ToString() + "\r\n") : "");
    }

    Harris角点
        cvCornerHarris函数检测的结果实际上是一幅包含Harris角点的浮点型单通道图像,可以使用类似下面的代码来计算包含Harris角点的图像:

    Harris角点
    //Harris角点
    private string CornerHarrisFeatureDetect()
    {
    //获取参数
    int blockSize = int.Parse(txtCornerHarrisBlockSize.Text);
    int apertureSize = int.Parse(txtCornerHarrisApertureSize.Text);
    double k = double.Parse(txtCornerHarrisK.Text);
    //计算
    Image<Gray, Single> imageDest = new Image<Gray, float>(imageSourceGrayscale.Size);
    Stopwatch sw
    = new Stopwatch();
    sw.Start();
    CvInvoke.cvCornerHarris(imageSourceGrayscale.Ptr, imageDest.Ptr, blockSize, apertureSize, k);
    sw.Stop();
    //显示
    pbResult.Image = imageDest.Bitmap;
    //释放资源
    imageDest.Dispose();
    //返回
    return string.Format("·Harris角点,用时{0:F05}毫秒,参数(邻域大小:{1},方形滤波器宽度:{2},权重系数:{3})\r\n", sw.Elapsed.TotalMilliseconds, blockSize, apertureSize, k);
    }

        如果要计算Harris角点列表,需要使用cvGoodFeatureToTrack函数,并传递适当的参数。

    ShiTomasi角点
        在默认情况下,cvGoodFeatureToTrack函数计算ShiTomasi角点;不过如果将参数use_harris设置为非0值,那么它会计算harris角点。
    使用cvGoodFeatureToTrack函数的示例代码如下:

    ShiTomasi角点
    //ShiTomasi角点
    private string CornerShiTomasiFeatureDetect()
    {
    //获取参数
    int cornerCount = int.Parse(txtGoodFeaturesCornerCount.Text);
    double qualityLevel = double.Parse(txtGoodFeaturesQualityLevel.Text);
    double minDistance = double.Parse(txtGoodFeaturesMinDistance.Text);
    int blockSize = int.Parse(txtGoodFeaturesBlockSize.Text);
    bool useHarris = cbGoodFeaturesUseHarris.Checked;
    double k = double.Parse(txtGoodFeaturesK.Text);
    //计算
    Stopwatch sw = new Stopwatch();
    sw.Start();
    PointF[][] corners
    = imageSourceGrayscale.GoodFeaturesToTrack(cornerCount, qualityLevel, minDistance, blockSize, useHarris, k);
    sw.Stop();
    //显示
    Image<Bgr, Byte> imageResult = imageSourceGrayscale.Convert<Bgr, Byte>();
    int cornerCount2 = 0;
    StringBuilder sbResult
    = new StringBuilder();
    int radius = (int)(minDistance / 2) + 1;
    int thickness = (int)(minDistance / 4) + 1;
    foreach (PointF[] cs in corners)
    {
    foreach (PointF p in cs)
    {
    imageResult.Draw(
    new CircleF(p, radius), new Bgr(255d, 0d, 0d), thickness);
    cornerCount2
    ++;
    sbResult.AppendFormat(
    "{0},", p);
    }
    }
    pbResult.Image
    = imageResult.Bitmap;
    //释放资源
    imageResult.Dispose();
    //返回
    return string.Format("·ShiTomasi角点,用时{0:F05}毫秒,参数(最大角点数目:{1},最小特征值:{2},角点间的最小距离:{3},邻域大小:{4},角点类型:{5},权重系数:{6}),检测到{7}个角点\r\n{8}",
    sw.Elapsed.TotalMilliseconds, cornerCount, qualityLevel, minDistance, blockSize, useHarris
    ? "Harris" : "ShiTomasi", k, cornerCount2, cornerCount2 > 0 ? (sbResult.ToString() + "\r\n") : "");
    }

    亚像素级角点
        在检测亚像素级角点前,需要提供角点的初始为止,这些初始位置可以用本文给出的其他的角点检测方式来获取,不过使用GoodFeaturesToTrack得到的结果最方便直接使用。
        亚像素级角点检测的示例代码如下:

    亚像素级角点
    //亚像素级角点
    private string CornerSubPixFeatureDetect()
    {
    //获取参数
    int winWidth = int.Parse(txtCornerSubPixWinWidth.Text);
    int winHeight = int.Parse(txtCornerSubPixWinHeight.Text);
    Size win
    = new Size(winWidth, winHeight);
    int zeroZoneWidth = int.Parse(txtCornerSubPixZeroZoneWidth.Text);
    int zeroZoneHeight = int.Parse(txtCornerSubPixZeroZoneHeight.Text);
    Size zeroZone
    = new Size(zeroZoneWidth, zeroZoneHeight);
    int maxIter=int.Parse(txtCornerSubPixMaxIter.Text);
    double epsilon=double.Parse(txtCornerSubPixEpsilon.Text);
    MCvTermCriteria criteria
    = new MCvTermCriteria(maxIter, epsilon);
    //先计算得到易于跟踪的点(ShiTomasi角点)
    int cornerCount = int.Parse(txtGoodFeaturesCornerCount.Text);
    double qualityLevel = double.Parse(txtGoodFeaturesQualityLevel.Text);
    double minDistance = double.Parse(txtGoodFeaturesMinDistance.Text);
    int blockSize = int.Parse(txtGoodFeaturesBlockSize.Text);
    bool useHarris = cbGoodFeaturesUseHarris.Checked;
    double k = double.Parse(txtGoodFeaturesK.Text);
    PointF[][] corners
    = imageSourceGrayscale.GoodFeaturesToTrack(cornerCount, qualityLevel, minDistance, blockSize, useHarris, k);
    //计算
    Stopwatch sw = new Stopwatch();
    sw.Start();
    imageSourceGrayscale.FindCornerSubPix(corners, win, zeroZone, criteria);
    sw.Stop();
    //显示
    Image<Bgr, Byte> imageResult = imageSourceGrayscale.Convert<Bgr, Byte>();
    int cornerCount2 = 0;
    StringBuilder sbResult
    = new StringBuilder();
    int radius = (int)(minDistance / 2) + 1;
    int thickness = (int)(minDistance / 4) + 1;
    foreach (PointF[] cs in corners)
    {
    foreach (PointF p in cs)
    {
    imageResult.Draw(
    new CircleF(p, radius), new Bgr(255d, 0d, 0d), thickness);
    cornerCount2
    ++;
    sbResult.AppendFormat(
    "{0},", p);
    }
    }
    pbResult.Image
    = imageResult.Bitmap;
    //释放资源
    imageResult.Dispose();
    //返回
    return string.Format("·亚像素级角点,用时{0:F05}毫秒,参数(搜索窗口:{1},死区:{2},最大迭代次数:{3},亚像素值的精度:{4}),检测到{5}个角点\r\n{6}",
    sw.Elapsed.TotalMilliseconds, win, zeroZone, maxIter, epsilon, cornerCount2, cornerCount2
    > 0 ? (sbResult.ToString() + "\r\n") : "");
    }

    SURF角点
        OpenCv中的cvExtractSURF函数和EmguCv中的Image<TColor,TDepth>.ExtractSURF方法用于检测SURF角点。
        SURF角点检测的示例代码如下:

    SURF角点
    //SURF角点
    private string SurfFeatureDetect()
    {
    //获取参数
    bool getDescriptors = cbSurfGetDescriptors.Checked;
    MCvSURFParams surfParam
    = new MCvSURFParams();
    surfParam.extended
    =rbSurfBasicDescriptor.Checked ? 0 : 1;
    surfParam.hessianThreshold
    =double.Parse(txtSurfHessianThreshold.Text);
    surfParam.nOctaves
    =int.Parse(txtSurfNumberOfOctaves.Text);
    surfParam.nOctaveLayers
    =int.Parse(txtSurfNumberOfOctaveLayers.Text);
    //计算
    SURFFeature[] features = null;
    MKeyPoint[] keyPoints
    = null;
    Stopwatch sw
    = new Stopwatch();
    sw.Start();
    if (getDescriptors)
    features
    = imageSourceGrayscale.ExtractSURF(ref surfParam);
    else
    keyPoints
    = surfParam.DetectKeyPoints(imageSourceGrayscale, null);
    sw.Stop();
    //显示
    bool showDetail = cbSurfShowDetail.Checked;
    Image
    <Bgr, Byte> imageResult = imageSourceGrayscale.Convert<Bgr, Byte>();
    StringBuilder sbResult
    = new StringBuilder();
    int idx = 0;
    if (getDescriptors)
    {
    foreach (SURFFeature feature in features)
    {
    imageResult.Draw(
    new CircleF(feature.Point.pt, 5), new Bgr(255d, 0d, 0d), 2);
    if (showDetail)
    {
    sbResult.AppendFormat(
    "第{0}点(坐标:{1},尺寸:{2},方向:{3}°,hessian值:{4},拉普拉斯标志:{5},描述:[",
    idx, feature.Point.pt, feature.Point.size, feature.Point.dir, feature.Point.hessian, feature.Point.laplacian);
    foreach (float d in feature.Descriptor)
    sbResult.AppendFormat(
    "{0},", d);
    sbResult.Append(
    "]),");
    }
    idx
    ++;
    }
    }
    else
    {
    foreach (MKeyPoint keypoint in keyPoints)
    {
    imageResult.Draw(
    new CircleF(keypoint.Point, 5), new Bgr(255d, 0d, 0d), 2);
    if (showDetail)
    sbResult.AppendFormat(
    "第{0}点(坐标:{1},尺寸:{2},方向:{3}°,响应:{4},octave:{5}),",
    idx, keypoint.Point, keypoint.Size, keypoint.Angle, keypoint.Response, keypoint.Octave);
    idx
    ++;
    }
    }
    pbResult.Image
    = imageResult.Bitmap;
    //释放资源
    imageResult.Dispose();
    //返回
    return string.Format("·SURF角点,用时{0:F05}毫秒,参数(描述:{1},hessian阀值:{2},octave数目:{3},每个octave的层数:{4},检测到{5}个角点\r\n{6}",
    sw.Elapsed.TotalMilliseconds, getDescriptors
    ? (surfParam.extended == 0 ? "获取基本描述" : "获取扩展描述") : "不获取描述", surfParam.hessianThreshold,
    surfParam.nOctaves, surfParam.nOctaveLayers, getDescriptors
    ? features.Length : keyPoints.Length, showDetail ? sbResult.ToString() + "\r\n" : "");
    }

    Star关键点
        OpenCv中的cvGetStarKeypoints函数和EmguCv中的Image<TColor,TDepth>.GetStarKeypoints方法用于检测“星型”附近的点。
        Star关键点检测的示例代码如下:

    Star关键点
    //Star关键点
    private string StarKeyPointFeatureDetect()
    {
    //获取参数
    StarDetector starParam = new StarDetector();
    starParam.MaxSize
    = int.Parse((string)cmbStarMaxSize.SelectedItem);
    starParam.ResponseThreshold
    = int.Parse(txtStarResponseThreshold.Text);
    starParam.LineThresholdProjected
    = int.Parse(txtStarLineThresholdProjected.Text);
    starParam.LineThresholdBinarized
    = int.Parse(txtStarLineThresholdBinarized.Text);
    starParam.SuppressNonmaxSize
    = int.Parse(txtStarSuppressNonmaxSize.Text);
    //计算
    Stopwatch sw = new Stopwatch();
    sw.Start();
    MCvStarKeypoint[] keyPoints
    = imageSourceGrayscale.GetStarKeypoints(ref starParam);
    sw.Stop();
    //显示
    Image<Bgr, Byte> imageResult = imageSourceGrayscale.Convert<Bgr, Byte>();
    StringBuilder sbResult
    = new StringBuilder();
    int idx = 0;
    foreach (MCvStarKeypoint keypoint in keyPoints)
    {
    imageResult.Draw(
    new CircleF(new PointF(keypoint.pt.X, keypoint.pt.Y), keypoint.size / 2), new Bgr(255d, 0d, 0d), keypoint.size / 4);
    sbResult.AppendFormat(
    "第{0}点(坐标:{1},尺寸:{2},强度:{3}),", idx, keypoint.pt, keypoint.size, keypoint.response);
    idx
    ++;
    }
    pbResult.Image
    = imageResult.Bitmap;
    //释放资源
    imageResult.Dispose();
    //返回
    return string.Format("·Star关键点,用时{0:F05}毫秒,参数(MaxSize:{1},ResponseThreshold:{2},LineThresholdProjected:{3},LineThresholdBinarized:{4},SuppressNonmaxSize:{5}),检测到{6}个关键点\r\n{7}",
    sw.Elapsed.TotalMilliseconds, starParam.MaxSize, starParam.ResponseThreshold, starParam.LineThresholdProjected, starParam.LineThresholdBinarized, starParam.SuppressNonmaxSize, keyPoints.Length, keyPoints.Length
    > 0 ? (sbResult.ToString() + "\r\n") : "");
    }

     
    FAST角点检测
        FAST角点由E. Rosten教授提出,相比其他检测手段,这种方法的速度正如其名,相当的快。值得关注的是他所研究的理论都是属于实用类的,都很快。Rosten教授实现了FAST角点检测,并将其提供给了OpenCv,相当的有爱呀;不过OpenCv中的函数和Rosten教授的实现似乎有点点不太一样。遗憾的是,OpenCv中目前还没有FAST角点检测的文档。下面是我从Rosten的代码中找到的函数声明,可以看到粗略的参数说明。
    /*
    The references are:

     * Machine learning for high-speed corner detection,
     
       E. Rosten and T. Drummond, ECCV 2006
     * Faster and better: A machine learning approach to corner detection

       E. Rosten, R. Porter and T. Drummond, PAMI, 2009

    */
    void cvCornerFast( const CvArr* image, int threshold, int N,

                       int nonmax_suppression, int* ret_number_of_corners,
                       CvPoint** ret_corners);


    image:      OpenCV image in which to detect corners. Must be 8 bit unsigned.

    threshold:  Threshold for detection (higher is fewer corners). 0--255

    N:          Arc length of detector, 9, 10, 11 or 12. 9 is usually best.

    nonmax_suppression: Whether to perform nonmaximal suppression.

    ret_number_of_corners: The number of detected corners is returned here.

    ret_corners: The corners are returned here.
    EmguCv中的Image<TColor,TDepth>.GetFASTKeypoints方法也实现了FAST角点检测,不过参数少了一些,只有threshold和nonmaxSupression,其中N我估计取的默认值9,但是返回的角点数目我不知道是怎么设置的。
    使用FAST角点检测的示例代码如下:

    FAST关键点
    //FAST关键点
    private string FASTKeyPointFeatureDetect()
    {
    //获取参数
    int threshold = int.Parse(txtFASTThreshold.Text);
    bool nonmaxSuppression = cbFASTNonmaxSuppression.Checked;
    bool showDetail = cbFASTShowDetail.Checked;
    //计算
    Stopwatch sw = new Stopwatch();
    sw.Start();
    MKeyPoint[] keyPoints
    = imageSourceGrayscale.GetFASTKeypoints(threshold, nonmaxSuppression);
    sw.Stop();
    //显示
    Image<Bgr, Byte> imageResult = imageSourceGrayscale.Convert<Bgr, Byte>();
    StringBuilder sbResult
    = new StringBuilder();
    int idx = 0;
    foreach (MKeyPoint keypoint in keyPoints)
    {
    imageResult.Draw(
    new CircleF(keypoint.Point, (int)(keypoint.Size / 2)), new Bgr(255d, 0d, 0d), (int)(keypoint.Size / 4));
    if (showDetail)
    sbResult.AppendFormat(
    "第{0}点(坐标:{1},尺寸:{2},方向:{3}°,响应:{4},octave:{5}),",
    idx, keypoint.Point, keypoint.Size, keypoint.Angle, keypoint.Response, keypoint.Octave);
    idx
    ++;
    }
    pbResult.Image
    = imageResult.Bitmap;
    //释放资源
    imageResult.Dispose();
    //返回
    return string.Format("·FAST关键点,用时{0:F05}毫秒,参数(阀值:{1},nonmaxSupression:{2}),检测到{3}个关键点\r\n{4}",
    sw.Elapsed.TotalMilliseconds, threshold, nonmaxSuppression, keyPoints.Length, showDetail
    ? (sbResult.ToString() + "\r\n") : "");
    }

    Lepetit关键点
        Lepetit关键点由Vincent Lepetit提出,可以在他的网站(http://cvlab.epfl.ch/~vlepetit/)上看到相关的论文等资料。EmguCv中的类LDetector实现了Lepetit关键点的检测。
        使用Lepetit关键点检测的示例代码如下:

    Lepetit关键点
    //Lepetit关键点
    private string LepetitKeyPointFeatureDetect()
    {
    //获取参数
    LDetector lepetitDetector = new LDetector();
    lepetitDetector.BaseFeatureSize
    = double.Parse(txtLepetitBaseFeatureSize.Text);
    lepetitDetector.ClusteringDistance
    = double.Parse(txtLepetitClasteringDistance.Text);
    lepetitDetector.NOctaves
    = int.Parse(txtLepetitNumberOfOctaves.Text);
    lepetitDetector.NViews
    = int.Parse(txtLepetitNumberOfViews.Text);
    lepetitDetector.Radius
    = int.Parse(txtLepetitRadius.Text);
    lepetitDetector.Threshold
    = int.Parse(txtLepetitThreshold.Text);
    lepetitDetector.Verbose
    = cbLepetitVerbose.Checked;
    int maxCount = int.Parse(txtLepetitMaxCount.Text);
    bool scaleCoords = cbLepetitScaleCoords.Checked;
    bool showDetail = cbLepetitShowDetail.Checked;
    //计算
    Stopwatch sw = new Stopwatch();
    sw.Start();
    MKeyPoint[] keyPoints
    = lepetitDetector.DetectKeyPoints(imageSourceGrayscale, maxCount, scaleCoords);
    sw.Stop();
    //显示
    Image<Bgr, Byte> imageResult = imageSourceGrayscale.Convert<Bgr, Byte>();
    StringBuilder sbResult
    = new StringBuilder();
    int idx = 0;
    foreach (MKeyPoint keypoint in keyPoints)
    {
    //imageResult.Draw(new CircleF(keypoint.Point, (int)(keypoint.Size / 2)), new Bgr(255d, 0d, 0d), (int)(keypoint.Size / 4));
    imageResult.Draw(new CircleF(keypoint.Point, 4), new Bgr(255d, 0d, 0d), 2);
    if (showDetail)
    sbResult.AppendFormat(
    "第{0}点(坐标:{1},尺寸:{2},方向:{3}°,响应:{4},octave:{5}),",
    idx, keypoint.Point, keypoint.Size, keypoint.Angle, keypoint.Response, keypoint.Octave);
    idx
    ++;
    }
    pbResult.Image
    = imageResult.Bitmap;
    //释放资源
    imageResult.Dispose();
    //返回
    return string.Format("·Lepetit关键点,用时{0:F05}毫秒,参数(基础特征尺寸:{1},集群距离:{2},阶数:{3},视图数:{4},半径:{5},阀值:{6},计算详细结果:{7},最大关键点数目:{8},缩放坐标:{9}),检测到{10}个关键点\r\n{11}",
    sw.Elapsed.TotalMilliseconds, lepetitDetector.BaseFeatureSize, lepetitDetector.ClusteringDistance, lepetitDetector.NOctaves, lepetitDetector.NViews,
    lepetitDetector.Radius, lepetitDetector.Threshold, lepetitDetector.Verbose, maxCount, scaleCoords, keyPoints.Length, showDetail
    ? (sbResult.ToString() + "\r\n") : "");
    }


    SIFT角点
        SIFT角点是一种广泛使用的图像特征,可用于物体跟踪、图像匹配、图像拼接等领域,然而奇怪的是它并未被OpenCv实现。提出SIFT角点的David Lowe教授已经用C和matlab实现了SIFT角点的检测,并开放了源代码,不过他的实现不方便直接使用。您可以在http://www.cs.ubc.ca/~lowe/keypoints/看到SIFT的介绍、相关论文及David Lowe教授的实现代码。下面我要介绍由Andrea Vedaldi和Brian Fulkerson先生创建的vlfeat开源图像处理库,vlfeat库有C和matlab两种实现,其中包含了SIFT检测。您可以在http://www.vlfeat.org/下载到vlfeat库的代码、文档及可执行文件。
        使用vlfeat检测SIFT角点需要以下步骤:
        (1)用函数vl_sift_new()初始化SIFT过滤器对象,该过滤器对象可以反复用于多幅尺寸相同的图像;
        (2)用函数vl_sift_first_octave()及vl_sift_process_next()遍历缩放空间的每一阶,直到返回VL_ERR_EOF为止;
        (3)对于缩放空间的每一阶,用函数vl_sift_detect()来获取关键点;
        (4)对每个关键点,用函数vl_sift_calc_keypoint_orientations()来获取该点的方向;
        (5)对关键点的每个方向,用函数vl_sift_calc_keypoint_descriptor()来获取该方向的描述;
        (6)使用完之后,用函数vl_sift_delete()来释放资源;
        (7)如果要计算某个自定义关键点的描述,可以使用函数vl_sift_calc_raw_descriptor()。
        直接使用vlfeat中的SIFT角点检测示例代码如下:

    通过P/Invoke调用vlfeat函数来进行SIFT检测
    //通过P/Invoke调用vlfeat函数来进行SIFT检测
    unsafe private string SiftFeatureDetectByPinvoke(int noctaves, int nlevels, int o_min, bool showDetail)
    {
    StringBuilder sbResult
    = new StringBuilder();
    //初始化
    IntPtr ptrSiftFilt = VlFeatInvoke.vl_sift_new(imageSource.Width, imageSource.Height, noctaves, nlevels, o_min);
    if (ptrSiftFilt == IntPtr.Zero)
    return "Sift特征检测:初始化失败。";
    //处理
    Image<Gray, Single> imageSourceSingle = imageSourceGrayscale.ConvertScale<Single>(1d, 0d);
    Image
    <Bgr, Byte> imageResult = imageSourceGrayscale.Convert<Bgr, Byte>();
    int pointCount = 0;
    int idx = 0;
    //依次遍历每一组
    if (VlFeatInvoke.vl_sift_process_first_octave(ptrSiftFilt, imageSourceSingle.MIplImage.imageData) != VlFeatInvoke.VL_ERR_EOF)
    {
    while (true)
    {
    //计算每组中的关键点
    VlFeatInvoke.vl_sift_detect(ptrSiftFilt);
    //遍历并绘制每个点
    VlSiftFilt siftFilt = (VlSiftFilt)Marshal.PtrToStructure(ptrSiftFilt, typeof(VlSiftFilt));
    pointCount
    += siftFilt.nkeys;
    VlSiftKeypoint
    * pKeyPoints = (VlSiftKeypoint*)siftFilt.keys.ToPointer();
    for (int i = 0; i < siftFilt.nkeys; i++)
    {
    VlSiftKeypoint keyPoint
    = *pKeyPoints;
    pKeyPoints
    ++;
    imageResult.Draw(
    new CircleF(new PointF(keyPoint.x, keyPoint.y), keyPoint.sigma / 2), new Bgr(255d, 0d, 0d), 2);
    if (showDetail)
    sbResult.AppendFormat(
    "第{0}点,坐标:({1},{2}),阶:{3},缩放:{4},s:{5},", idx, keyPoint.x, keyPoint.y, keyPoint.o, keyPoint.sigma, keyPoint.s);
    idx
    ++;
    //计算并遍历每个点的方向
    double[] angles = new double[4];
    int angleCount = VlFeatInvoke.vl_sift_calc_keypoint_orientations(ptrSiftFilt, angles, ref keyPoint);
    if (showDetail)
    sbResult.AppendFormat(
    "共{0}个方向,", angleCount);
    for (int j = 0; j < angleCount; j++)
    {
    double angle = angles[j];
    if (showDetail)
    sbResult.AppendFormat(
    "【方向:{0},描述:", angle);
    //计算每个方向的描述
    IntPtr ptrDescriptors = Marshal.AllocHGlobal(128 * sizeof(float));
    VlFeatInvoke.vl_sift_calc_keypoint_descriptor(ptrSiftFilt, ptrDescriptors,
    ref keyPoint, angle);
    float* pDescriptors = (float*)ptrDescriptors.ToPointer();
    for (int k = 0; k < 128; k++)
    {
    float descriptor = *pDescriptors;
    pDescriptors
    ++;
    if (showDetail)
    sbResult.AppendFormat(
    "{0},", descriptor);
    }
    sbResult.Append(
    "】,");
    Marshal.FreeHGlobal(ptrDescriptors);
    }
    }
    //下一阶
    if (VlFeatInvoke.vl_sift_process_next_octave(ptrSiftFilt) == VlFeatInvoke.VL_ERR_EOF)
    break;
    }
    }
    //显示
    pbResult.Image = imageResult.Bitmap;
    //释放资源
    VlFeatInvoke.vl_sift_delete(ptrSiftFilt);
    imageSourceSingle.Dispose();
    imageResult.Dispose();
    //返回
    return string.Format("·SIFT特征检测(P/Invoke),用时:未统计,参数(阶数:{0},每阶层数:{1},最小阶索引:{2}),{3}个关键点\r\n{4}",
    noctaves, nlevels, o_min, pointCount, showDetail
    ? (sbResult.ToString() + "\r\n") : "");
    }


        要在.net中使用vlfeat还是不够方便,为此我对vlfeat中的SIFT角点检测部分进行了封装,将相关操作放到了类SiftDetector中。
        使用SiftDetector需要两至三步:
        (1)用构造函数初始化SiftDetector对象;
        (2)用Process方法计算特征;
        (3)视需要调用Dispose方法释放资源,或者等待垃圾回收器来自动释放资源。
        使用SiftDetector的示例代码如下:

    通过dotnet封装的SiftDetector类来进行SIFT检测
    //通过dotnet封装的SiftDetector类来进行SIFT检测
    private string SiftFeatureDetectByDotNet(int noctaves, int nlevels, int o_min, bool showDetail)
    {
    //初始化对象
    SiftDetector siftDetector = new SiftDetector(imageSource.Size, noctaves, nlevels, o_min);
    //计算
    Image<Gray, Single> imageSourceSingle = imageSourceGrayscale.Convert<Gray, Single>();
    Stopwatch sw
    = new Stopwatch();
    sw.Start();
    List
    <SiftFeature> features = siftDetector.Process(imageSourceSingle, showDetail ? SiftDetectorResultType.Extended : SiftDetectorResultType.Basic);
    sw.Stop();
    //显示结果
    Image<Bgr, Byte> imageResult = imageSourceGrayscale.Convert<Bgr, Byte>();
    StringBuilder sbResult
    = new StringBuilder();
    int idx=0;
    foreach (SiftFeature feature in features)
    {
    imageResult.Draw(
    new CircleF(new PointF(feature.keypoint.x, feature.keypoint.y), feature.keypoint.sigma / 2), new Bgr(255d, 0d, 0d), 2);
    if (showDetail)
    {
    sbResult.AppendFormat(
    "第{0}点,坐标:({1},{2}),阶:{3},缩放:{4},s:{5},",
    idx, feature.keypoint.x, feature.keypoint.y, feature.keypoint.o, feature.keypoint.sigma, feature.keypoint.s);
    sbResult.AppendFormat(
    "共{0}个方向,", feature.keypointOrientations != null ? feature.keypointOrientations.Length : 0);
    if (feature.keypointOrientations != null)
    {
    foreach (SiftKeyPointOrientation orientation in feature.keypointOrientations)
    {
    if (orientation.descriptors != null)
    {
    sbResult.AppendFormat(
    "【方向:{0},描述:", orientation.angle);
    foreach (float descriptor in orientation.descriptors)
    sbResult.AppendFormat(
    "{0},", descriptor);
    }
    else
    sbResult.AppendFormat(
    "【方向:{0},", orientation.angle);
    sbResult.Append(
    "】,");
    }
    }
    }
    }
    pbResult.Image
    = imageResult.Bitmap;
    //释放资源
    siftDetector.Dispose();
    imageSourceSingle.Dispose();
    imageResult.Dispose();
    //返回
    return string.Format("·SIFT特征检测(.net),用时:{0:F05}毫秒,参数(阶数:{1},每阶层数:{2},最小阶索引:{3}),{4}个关键点\r\n{5}",
    sw.Elapsed.TotalMilliseconds, noctaves, nlevels, o_min, features.Count, showDetail
    ? (sbResult.ToString() + "\r\n") : "");
    }


        对vlfeat库中的SIFT部分封装代码如下所示:

    定义SiftDetector类
    using System;
    using System.Collections.Generic;
    using System.Linq;
    using System.Text;
    using System.Runtime.InteropServices;

    namespace ImageProcessLearn
    {
    [StructLayoutAttribute(LayoutKind.Sequential)]
    public struct VlSiftKeypoint
    {

    /// int
    public int o;

    /// int
    public int ix;

    /// int
    public int iy;

    /// int
    public int @is;

    /// float
    public float x;

    /// float
    public float y;

    /// float
    public float s;

    /// float
    public float sigma;
    }

    [StructLayoutAttribute(LayoutKind.Sequential)]
    public struct VlSiftFilt
    {

    /// double
    public double sigman;

    /// double
    public double sigma0;

    /// double
    public double sigmak;

    /// double
    public double dsigma0;

    /// int
    public int width;

    /// int
    public int height;

    /// int
    public int O;

    /// int
    public int S;

    /// int
    public int o_min;

    /// int
    public int s_min;

    /// int
    public int s_max;

    /// int
    public int o_cur;

    /// vl_sift_pix*
    public System.IntPtr temp;

    /// vl_sift_pix*
    public System.IntPtr octave;

    /// vl_sift_pix*
    public System.IntPtr dog;

    /// int
    public int octave_width;

    /// int
    public int octave_height;

    /// VlSiftKeypoint*
    public System.IntPtr keys;

    /// int
    public int nkeys;

    /// int
    public int keys_res;

    /// double
    public double peak_thresh;

    /// double
    public double edge_thresh;

    /// double
    public double norm_thresh;

    /// double
    public double magnif;

    /// double
    public double windowSize;

    /// vl_sift_pix*
    public System.IntPtr grad;

    /// int
    public int grad_o;

    /// <summary>
    /// 获取SiftFilt指针;
    /// 注意在使用完指针之后,需要用Marshal.FreeHGlobal释放内存。
    /// </summary>
    /// <returns></returns>
    unsafe public IntPtr GetPtrOfVlSiftFilt()
    {
    IntPtr ptrSiftFilt
    = Marshal.AllocHGlobal(sizeof(VlSiftFilt));
    Marshal.StructureToPtr(
    this, ptrSiftFilt, true);
    return ptrSiftFilt;
    }
    }

    public class VlFeatInvoke
    {
    /// VL_ERR_MSG_LEN -> 1024
    public const int VL_ERR_MSG_LEN = 1024;

    /// VL_ERR_OK -> 0
    public const int VL_ERR_OK = 0;

    /// VL_ERR_OVERFLOW -> 1
    public const int VL_ERR_OVERFLOW = 1;

    /// VL_ERR_ALLOC -> 2
    public const int VL_ERR_ALLOC = 2;

    /// VL_ERR_BAD_ARG -> 3
    public const int VL_ERR_BAD_ARG = 3;

    /// VL_ERR_IO -> 4
    public const int VL_ERR_IO = 4;

    /// VL_ERR_EOF -> 5
    public const int VL_ERR_EOF = 5;

    /// VL_ERR_NO_MORE -> 5
    public const int VL_ERR_NO_MORE = 5;

    /// Return Type: VlSiftFilt*
    /// int
    ///height: int
    ///noctaves: int
    ///nlevels: int
    ///o_min: int
    [DllImportAttribute("vl.dll", EntryPoint = "vl_sift_new")]
    public static extern System.IntPtr vl_sift_new(int width, int height, int noctaves, int nlevels, int o_min);


    /// Return Type: void
    ///f: VlSiftFilt*
    [DllImportAttribute("vl.dll", EntryPoint = "vl_sift_delete")]
    public static extern void vl_sift_delete(IntPtr f);


    /// Return Type: int
    ///f: VlSiftFilt*
    ///im: vl_sift_pix*
    [DllImportAttribute("vl.dll", EntryPoint = "vl_sift_process_first_octave")]
    public static extern int vl_sift_process_first_octave(IntPtr f, IntPtr im);


    /// Return Type: int
    ///f: VlSiftFilt*
    [DllImportAttribute("vl.dll", EntryPoint = "vl_sift_process_next_octave")]
    public static extern int vl_sift_process_next_octave(IntPtr f);


    /// Return Type: void
    ///f: VlSiftFilt*
    [DllImportAttribute("vl.dll", EntryPoint = "vl_sift_detect")]
    public static extern void vl_sift_detect(IntPtr f);


    /// Return Type: int
    ///f: VlSiftFilt*
    ///angles: double*
    ///k: VlSiftKeypoint*
    [DllImportAttribute("vl.dll", EntryPoint = "vl_sift_calc_keypoint_orientations")]
    public static extern int vl_sift_calc_keypoint_orientations(IntPtr f, double[] angles, ref VlSiftKeypoint k);


    /// Return Type: void
    ///f: VlSiftFilt*
    ///descr: vl_sift_pix*
    ///k: VlSiftKeypoint*
    ///angle: double
    [DllImportAttribute("vl.dll", EntryPoint = "vl_sift_calc_keypoint_descriptor")]
    public static extern void vl_sift_calc_keypoint_descriptor(IntPtr f, IntPtr descr, ref VlSiftKeypoint k, double angle);


    /// Return Type: void
    ///f: VlSiftFilt*
    ///image: vl_sift_pix*
    ///descr: vl_sift_pix*
    ///widht: int
    ///height: int
    ///x: double
    ///y: double
    ///s: double
    ///angle0: double
    [DllImportAttribute("vl.dll", EntryPoint = "vl_sift_calc_raw_descriptor")]
    public static extern void vl_sift_calc_raw_descriptor(IntPtr f, IntPtr image, IntPtr descr, int widht, int height, double x, double y, double s, double angle0);


    /// Return Type: void
    ///f: VlSiftFilt*
    ///k: VlSiftKeypoint*
    ///x: double
    ///y: double
    ///sigma: double
    [DllImportAttribute("vl.dll", EntryPoint = "vl_sift_keypoint_init")]
    public static extern void vl_sift_keypoint_init(IntPtr f, ref VlSiftKeypoint k, double x, double y, double sigma);
    }
    }
    SiftDetector类的实现代码如下所示:
    using System;
    using System.Collections.Generic;
    using System.Linq;
    using System.Text;
    using System.Drawing;
    using System.Runtime.InteropServices;
    using Emgu.CV;
    using Emgu.CV.Structure;

    namespace ImageProcessLearn
    {
    /// <summary>
    /// SIFT检测器
    /// </summary>
    public class SiftDetector : IDisposable
    {
    //成员变量
    private IntPtr ptrSiftFilt;

    //属性
    /// <summary>
    /// SiftFilt指针
    /// </summary>
    public IntPtr PtrSiftFilt
    {
    get
    {
    return ptrSiftFilt;
    }
    }

    /// <summary>
    /// 获取SIFT检测器中的SiftFilt
    /// </summary>
    public VlSiftFilt SiftFilt
    {
    get
    {
    return (VlSiftFilt)Marshal.PtrToStructure(ptrSiftFilt, typeof(VlSiftFilt));
    }
    }

    /// <summary>
    /// 构造函数
    /// </summary>
    /// <param name="width">图像的宽度</param>
    /// <param name="height">图像的高度</param>
    /// <param name="noctaves">阶数</param>
    /// <param name="nlevels">每一阶的层数</param>
    /// <param name="o_min">最小阶的索引</param>
    public SiftDetector(int width, int height, int noctaves, int nlevels, int o_min)
    {
    ptrSiftFilt
    = VlFeatInvoke.vl_sift_new(width, height, noctaves, nlevels, o_min);
    }
    public SiftDetector(int width, int height)
    :
    this(width, height, 4, 2, 0)
    { }
    public SiftDetector(Size size, int noctaves, int nlevels, int o_min)
    :
    this(size.Width, size.Height, noctaves, nlevels, o_min)
    { }
    public SiftDetector(Size size)
    :
    this(size.Width, size.Height, 4, 2, 0)
    { }

    /// <summary>
    /// 进行SIFT检测,并返回检测的结果
    /// </summary>
    /// <param name="im">单通道浮点型图像数据,图像数据不必归一化到区间[0,1]</param>
    /// <param name="resultType">SIFT检测的结果类型</param>
    /// <returns>返回SIFT检测结果——SIFT特征列表;如果检测失败,返回null。</returns>
    unsafe public List<SiftFeature> Process(IntPtr im, SiftDetectorResultType resultType)
    {
    //定义变量
    List<SiftFeature> features = null; //检测结果:SIFT特征列表
    VlSiftFilt siftFilt; //
    VlSiftKeypoint* pKeyPoints; //指向关键点的指针
    VlSiftKeypoint keyPoint; //关键点
    SiftKeyPointOrientation[] orientations; //关键点对应的方向及描述
    double[] angles = new double[4]; //关键点对应的方向(角度)
    int angleCount; //某个关键点的方向数目
    double angle; //方向
    float[] descriptors; //关键点某个方向的描述
    IntPtr ptrDescriptors = Marshal.AllocHGlobal(128 * sizeof(float)); //指向描述的缓冲区指针
    //依次遍历每一阶
    if (VlFeatInvoke.vl_sift_process_first_octave(ptrSiftFilt, im) != VlFeatInvoke.VL_ERR_EOF)
    {
    features
    = new List<SiftFeature>(100);
    while (true)
    {
    //计算每组中的关键点
    VlFeatInvoke.vl_sift_detect(ptrSiftFilt);
    //遍历每个点
    siftFilt = (VlSiftFilt)Marshal.PtrToStructure(ptrSiftFilt, typeof(VlSiftFilt));
    pKeyPoints
    = (VlSiftKeypoint*)siftFilt.keys.ToPointer();
    for (int i = 0; i < siftFilt.nkeys; i++)
    {
    keyPoint
    = *pKeyPoints;
    pKeyPoints
    ++;
    orientations
    = null;
    if (resultType == SiftDetectorResultType.Normal || resultType == SiftDetectorResultType.Extended)
    {
    //计算并遍历每个点的方向
    angleCount = VlFeatInvoke.vl_sift_calc_keypoint_orientations(ptrSiftFilt, angles, ref keyPoint);
    orientations
    = new SiftKeyPointOrientation[angleCount];
    for (int j = 0; j < angleCount; j++)
    {
    angle
    = angles[j];
    descriptors
    = null;
    if (resultType == SiftDetectorResultType.Extended)
    {
    //计算每个方向的描述
    VlFeatInvoke.vl_sift_calc_keypoint_descriptor(ptrSiftFilt, ptrDescriptors, ref keyPoint, angle);
    descriptors
    = new float[128];
    Marshal.Copy(ptrDescriptors, descriptors,
    0, 128);
    }
    orientations[j]
    = new SiftKeyPointOrientation(angle, descriptors); //保存关键点方向和描述
    }
    }
    features.Add(
    new SiftFeature(keyPoint, orientations)); //将得到的特征添加到列表中
    }
    //下一阶
    if (VlFeatInvoke.vl_sift_process_next_octave(ptrSiftFilt) == VlFeatInvoke.VL_ERR_EOF)
    break;
    }
    }
    //释放资源
    Marshal.FreeHGlobal(ptrDescriptors);
    //返回
    return features;
    }

    /// <summary>
    /// 进行基本的SIFT检测,并返回关键点列表
    /// </summary>
    /// <param name="im">单通道浮点型图像数据,图像数据不必归一化到区间[0,1]</param>
    /// <returns>返回关键点列表;如果获取失败,返回null。</returns>
    public List<SiftFeature> Process(IntPtr im)
    {
    return Process(im, SiftDetectorResultType.Basic);
    }

    /// <summary>
    /// 进行SIFT检测,并返回检测的结果
    /// </summary>
    /// <param name="image">图像</param>
    /// <param name="resultType">SIFT检测的结果类型</param>
    /// <returns>返回SIFT检测结果——SIFT特征列表;如果检测失败,返回null。</returns>
    public List<SiftFeature> Process(Image<Gray, Single> image, SiftDetectorResultType resultType)
    {
    if (image.Width != SiftFilt.width || image.Height != SiftFilt.height)
    throw new ArgumentException("图像的尺寸和构造函数中指定的尺寸不一致。", "image");
    return Process(image.MIplImage.imageData, resultType);
    }

    /// <summary>
    /// 进行基本的SIFT检测,并返回检测的结果
    /// </summary>
    /// <param name="image">图像</param>
    /// <returns>返回SIFT检测结果——SIFT特征列表;如果检测失败,返回null。</returns>
    public List<SiftFeature> Process(Image<Gray, Single> image)
    {
    return Process(image, SiftDetectorResultType.Basic);
    }

    /// <summary>
    /// 释放资源
    /// </summary>
    public void Dispose()
    {
    if (ptrSiftFilt != IntPtr.Zero)
    VlFeatInvoke.vl_sift_delete(ptrSiftFilt);
    }
    }

    /// <summary>
    /// SIFT特征
    /// </summary>
    public struct SiftFeature
    {
    public VlSiftKeypoint keypoint; //关键点
    public SiftKeyPointOrientation[] keypointOrientations; //关键点的方向及方向对应的描述

    public SiftFeature(VlSiftKeypoint keypoint)
    :
    this(keypoint, null)
    {
    }

    public SiftFeature(VlSiftKeypoint keypoint, SiftKeyPointOrientation[] keypointOrientations)
    {
    this.keypoint = keypoint;
    this.keypointOrientations = keypointOrientations;
    }
    }

    /// <summary>
    /// Sift关键点的方向及描述
    /// </summary>
    public struct SiftKeyPointOrientation
    {
    public double angle; //方向
    public float[] descriptors; //描述

    public SiftKeyPointOrientation(double angle)
    :
    this(angle, null)
    {
    }

    public SiftKeyPointOrientation(double angle, float[] descriptors)
    {
    this.angle = angle;
    this.descriptors = descriptors;
    }
    }

    /// <summary>
    /// SIFT检测的结果
    /// </summary>
    public enum SiftDetectorResultType
    {
    Basic,
    //基本:仅包含关键点
    Normal, //正常:包含关键点、方向
    Extended //扩展:包含关键点、方向以及描述
    }
    }


    MSER区域
        OpenCv中的函数cvExtractMSER以及EmguCv中的Image<TColor,TDepth>.ExtractMSER方法实现了MSER区域的检测。由于OpenCv的文档中目前还没有cvExtractMSER这一部分,大家如果要看文档的话,可以先去看EmguCv的文档。
        需要注意的是MSER区域的检测结果是区域中所有的点序列。例如检测到3个区域,其中一个区域是从(0,0)到(2,1)的矩形,那么结果点序列为:(0,0),(1,0),(2,0),(2,1),(1,1),(0,1)。
        MSER区域检测的示例代码如下:

    MSER(区域)特征检测
    //MSER(区域)特征检测
    private string MserFeatureDetect()
    {
    //获取参数
    MCvMSERParams mserParam = new MCvMSERParams();
    mserParam.delta
    = int.Parse(txtMserDelta.Text);
    mserParam.maxArea
    = int.Parse(txtMserMaxArea.Text);
    mserParam.minArea
    = int.Parse(txtMserMinArea.Text);
    mserParam.maxVariation
    = float.Parse(txtMserMaxVariation.Text);
    mserParam.minDiversity
    = float.Parse(txtMserMinDiversity.Text);
    mserParam.maxEvolution
    = int.Parse(txtMserMaxEvolution.Text);
    mserParam.areaThreshold
    = double.Parse(txtMserAreaThreshold.Text);
    mserParam.minMargin
    = double.Parse(txtMserMinMargin.Text);
    mserParam.edgeBlurSize
    = int.Parse(txtMserEdgeBlurSize.Text);
    bool showDetail = cbMserShowDetail.Checked;
    //计算
    Stopwatch sw = new Stopwatch();
    sw.Start();
    MemStorage storage
    = new MemStorage();
    Seq
    <Point>[] regions = imageSource.ExtractMSER(null, ref mserParam, storage);
    sw.Stop();
    //显示
    Image<Bgr, Byte> imageResult = imageSourceGrayscale.Convert<Bgr, Byte>();
    StringBuilder sbResult
    = new StringBuilder();
    int idx = 0;
    foreach (Seq<Point> region in regions)
    {
    imageResult.DrawPolyline(region.ToArray(),
    true, new Bgr(255d, 0d, 0d), 2);
    if (showDetail)
    {
    sbResult.AppendFormat(
    "第{0}区域,包含{1}个顶点(", idx, region.Total);
    foreach (Point pt in region)
    sbResult.AppendFormat(
    "{0},", pt);
    sbResult.Append(
    ")\r\n");
    }
    idx
    ++;
    }
    pbResult.Image
    = imageResult.Bitmap;
    //释放资源
    imageResult.Dispose();
    storage.Dispose();
    //返回
    return string.Format("·MSER区域,用时{0:F05}毫秒,参数(delta:{1},maxArea:{2},minArea:{3},maxVariation:{4},minDiversity:{5},maxEvolution:{6},areaThreshold:{7},minMargin:{8},edgeBlurSize:{9}),检测到{10}个区域\r\n{11}",
    sw.Elapsed.TotalMilliseconds, mserParam.delta, mserParam.maxArea, mserParam.minArea, mserParam.maxVariation, mserParam.minDiversity,
    mserParam.maxEvolution, mserParam.areaThreshold, mserParam.minMargin, mserParam.edgeBlurSize, regions.Length, showDetail
    ? sbResult.ToString() : "");
    }

    各种特征检测方法性能对比
        上面介绍了这么多的特征检测方法,那么它们的性能到底如何呢?因为它们的参数设置对处理时间及结果的影响很大,我们在这里基本都使用默认参数处理同一幅图像。在我机器上的处理结果见下表:

    特征 用时(毫秒) 特征数目
    Sobel算子 5.99420 n/a
    拉普拉斯算子 3.13440 n/a
    Canny算子 3.41160 n/a
    霍夫线变换 13.70790 10
    霍夫圆变换 78.07720 0
    Harris角点 9.41750 n/a
    ShiTomasi角点 16.98390 18
    亚像素级角点 3.63360 18
    SURF角点 266.27000 151
    Star关键点 14.82800 56
    FAST角点 31.29670 159
    SIFT角点 287.52310 54
    MSER区域 40.62970 2

    (图片尺寸:583x301,处理器:AMD ATHLON IIx2 240,内存:DDR3 4G,显卡:GeForce 9500GT,操作系统:Windows 7)

     

    感谢您耐心看完本文,希望对您有所帮助。

    下一篇文章我们将一起看看如何来跟踪本文讲到的特征点(角点)。

    另外,如果需要本文的源代码,请点击这里下载

  • 相关阅读:
    java 拦截器、过滤器、监听器
    说说java
    八、 Spring Boot 过滤器、监听器
    六、Spring Boot Controller使用
    四、Spring Boot 多数据源 自动切换
    三、Spring Boot 多数据源配置
    二、spring Boot构建的Web应用中,基于MySQL数据库的几种数据库连接方式进行介绍
    对程序员面试的一些思考
    在同一个sql语句中,统计不同条件的Count数量
    redis持久化的几种方式
  • 原文地址:https://www.cnblogs.com/xrwang/p/ImageFeatureDetection.html
Copyright © 2011-2022 走看看