zoukankan      html  css  js  c++  java
  • [2019.3.11]BZOJ2656 [Zjoi2012]数列(sequence)

    首选,对于(N)为偶数,我们可以不停地把它除以2,于是我们只用考虑(N)为奇数的情况。

    我们有(A_{2i+1}=A_i+A_{i+1})

    于是我们设(B_i=A_i+A_{i+1})

    (i)为奇数

    (B_i=A_i+A_{i+1}=A_{frac{i}{2}}+A_{frac{i}{2}+1}+A_{frac{2}{i}+1}=A_{frac{i}{2}}+2A_{frac{i}{2}+1})

    (i)为偶数

    (B_i=A_i+A_{i+1}=A_{frac{i}{2}}+A_{frac{i}{2}}+A_{frac{i}{2}+1}=2A_{frac{i}{2}}+A_{frac{i}{2}+1})

    但是我们发现这并没有什么卵用

    但是这样就启发我们每次可以把(i)变成(frac{i}{2})

    于是我们设(f(i,j,k)=jA_i+kA_{i+1})

    于是当(i)为奇数

    (f_{i,j,k}=jA_i+kA_{i+1}=jA_{frac{i}{2}}+jA_{frac{i}{2}+1}+kA_{frac{2}{i}+1}=jA_{frac{i}{2}}+(j+k)A_{frac{i}{2}+1}=f_{frac{i}{2},j,j+k})

    (i)为偶数

    (f_{i,j,k}=jA_i+kA_{i+1}=jA_{frac{i}{2}}+kA_{frac{i}{2}}+kA_{frac{i}{2}+1}=(j+k)A_{frac{i}{2}}+kA_{frac{i}{2}+1}=f_{frac{i}{2},j+k,k})

    写一个高精度模板就好了。

    时间复杂度(O(log_2nlog_{10}n))

    code:

    (主函数只有10行,高精模板有63行QWQ)

    #include<bits/stdc++.h>
    #define UN XRY_template::unsigned_NUM<10000,30>
    using namespace std;
    namespace XRY_template{
    	template<int base,int size>class unsigned_NUM{//base=pow(10,x) if you want to press x position
    		typedef unsigned_NUM<base,size> uN;
    		private:
    			int v[size],sz;
    			string TMP;
    		public:
    			void clear(){
    				memset(v,0,sizeof(v)),sz=0;
    			}
    			unsigned_NUM(int y=0){
    				clear();
    				while(y)v[++sz]=y%base,y/=base;
    			}
    			uN operator+(const uN&y)const{
    				unsigned_NUM tmp;
    				int w=0;
    				tmp.sz=sz>y.sz?sz:y.sz;
    				for(int i=1;i<=tmp.sz;++i)tmp.v[i]=v[i]+y.v[i]+w,w=tmp.v[i]/base,tmp.v[i]%=base,w&&i==tmp.sz?++tmp.sz:0;
    				return tmp;
    			}
    			uN operator-(const uN&y)const{
    				uN tmp;
    				tmp.sz=sz>y.sz?sz:y.sz;
    				for(int i=1;i<=tmp.sz;++i)tmp.v[i]+=v[i]-y.v[i],tmp.v[i]<0?tmp.v[i]+=base,--tmp.v[i+1]:0;
    				while(tmp.sz&&!tmp.v[tmp.sz])--tmp.sz;
    				return tmp;
    			}
    			uN operator/(const int&y)const{
    				uN tmp;
    				tmp=*this;
    				int w=0;
    				for(int i=tmp.sz;i>=1;--i)tmp.v[i]+=base*w,w=tmp.v[i]%y,tmp.v[i]/=y;
    				while(tmp.sz&&!tmp.v[tmp.sz])--tmp.sz;
    				return tmp;
    			}
    			/*--------------------------------------*/
    			bool operator==(const uN&y)const{
    				if(sz!=y.sz)return false;
    				for(int i=1;i<=sz;++i)if(v[i]!=y.v[i])return false;
    				return true;
    			}
    			/*--------------------------------------*/
    			bool odd()const{
    				return v[1]&1;
    			}
    			void scan(){
    				clear();
    				cin>>TMP,sz=1;
    				int siz=TMP.size()-1,bs=1;
    				while(~siz)v[sz]+=bs*(TMP[siz--]-'0'),bs=(bs*10<base?bs*10:(++sz,bs=1));
    				if(!v[1])sz=0;
    			}
    			void print()const{
    				if(!sz)return(void)putchar('0');
    				int bs=base/10;
    				for(int i=sz;i>=1;--i,bs=base/10){
    					while(bs>v[i])i!=sz?putchar('0'):0,bs/=10;
    					while(bs)putchar(v[i]/bs%10+'0'),bs/=10;
    				}
    			}
    	};
    }
    int T;
    UN n,one;
    UN f(UN x,UN y,UN z){
    	if(x==0)return z;
    	return x.odd()?f(x/2,y,y+z):f(x/2,y+z,z);
    }
    int main(){
    	one=1;
    	scanf("%d",&T);
    	while(T--){
    		n.scan();
    		while(!n.odd())n=n/2;
    		f(n/2,one,one).print(),putchar('
    ');
    	}	
    	return 0;
    }
    
  • 相关阅读:
    【2017中国大学生程序设计竞赛
    【hdu 4333】Revolving Digits
    【hihocoder 1554】最短的 Nore0061
    【2017中国大学生程序设计竞赛
    【Codeforces Beta Round #88 C】Cycle
    【2017 Multi-University Training Contest
    【Codeforces Round #429 (Div. 2) C】Leha and Function
    【Codeforces Round #429 (Div. 2) B】 Godsend
    【Codeforces Round #429 (Div. 2) A】Generous Kefa
    Single-stack real-time operating system for embedded systems
  • 原文地址:https://www.cnblogs.com/xryjr233/p/BZOJ2656.html
Copyright © 2011-2022 走看看