题目描述
You are given a sequence (A) of (N (N <= 50000)) integers between (-10000) and (10000). On this sequence you have to apply (M (M <= 50000)) operations:
modify the (i)-th element in the sequence or for given (x) (y) print (max{A_i + A_{i+1} + .. + A_j) (|) (x<=i<=j<=y }).
输入输出格式
输入格式
The first line of input contains an integer (N).
The following line contains (N) integers, representing the sequence (A_{1}..A_{N}).
The third line contains an integer (M). The next (M) lines contain the operations in following form:
0 x y
: modify (A_x) into (y) ((|y|<=10000)).
1 x y
: print (max{A_i + A_{i+1} + .. + A_j) (|) (x<=i<=j<=y}).
输出格式
For each query, print an integer as the problem required.
输入输出样例
输入样例#1
4
1 2 3 4
4
1 1 3
0 3 -3
1 2 4
1 3 3
输出样例#1
6
4
-3
题意翻译
(n) 个数,(q) 次操作
操作0 x y
把(A_x) 修改为(y)
操作1 l r
询问区间([l, r])的最大子段和
题解
这题就是GSS1的带修改版本,建议先看一看我的题解,了解不带修改的版本怎么写。
本题的代码基于我GSS1的题解,一些注释也可以在那里看到。
这里讲一讲怎么修改:
与线段树相似,如果当前已经访问到了叶子节点,就直接将这个节点的所有参数都设为要修改的值即可,否则就递归左子树或右子树。最后记得上传节点!
下面给出(AC)代码:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <cctype>
using namespace std;
inline int gi()
{
int f = 1, x = 0; char c = getchar();
while (c < '0' || c > '9') { if (c == '-') f = -1; c = getchar();}
while (c >= '0' && c <= '9') { x = x * 10 + c - '0'; c = getchar();}
return f * x;
}
int n, m;
struct Node
{
int sum, lans, rans, ans;
} t[50005 << 2];
inline void pushup(int x)
{
t[x].sum = t[x << 1].sum + t[(x << 1) | 1].sum;
t[x].lans = max(t[x << 1].lans, t[x << 1].sum + t[(x << 1) | 1].lans);
t[x].rans = max(t[(x << 1) | 1].rans, t[(x << 1) | 1].sum + t[x << 1].rans);
t[x].ans = max(max(t[x << 1].ans, t[(x << 1) | 1].ans), t[x << 1].rans + t[(x << 1) | 1].lans);
}
void bulid(int s, int o, int p)
{
if (s == o)
{
t[p].sum = t[p].lans = t[p].rans = t[p].ans = gi();
return;
}
int mid = (s + o) >> 1;
bulid(s, mid, p << 1);
bulid(mid + 1, o, (p << 1) | 1);
pushup(p);
}
void modify(int l, int r, int s, int o, int p)//修改操作
{
if (s == o)//已经是叶子节点了
{
t[p].ans = t[p].lans = t[p].rans = t[p].sum = r;//就更新它的所有参数
return;
}
int mid = (s + o) >> 1;//找中点
if (l <= mid) modify(l, r, s, mid, p << 1);//点在中点左边就递归左子树
else modify(l, r, mid + 1, o, (p << 1) | 1);//否则递归右子树
pushup(p);//上传节点
}
Node getans(int l, int r, int s, int o, int p)
{
if (l <= s && r >= o)
{
return t[p];
}
int mid = (s + o) >> 1;
if (l > mid) return getans(l, r, mid + 1, o, (p << 1) | 1);
if (r <= mid) return getans(l, r, s, mid, p << 1);
else
{
Node ans, a, b;
a = getans(l, r, s, mid, p << 1), b = getans(l, r, mid + 1, o, (p << 1) | 1);
ans.sum = a.sum + b.sum;
ans.ans = max(max(a.ans, a.rans + b.lans), b.ans);
ans.lans = max(a.lans, a.sum + b.lans);
ans.rans = max(b.rans, b.sum + a.rans);
return ans;
}
}
int main()
{
n = gi();
bulid(1, n, 1);
m = gi();
for (int i = 1; i <= m; i++)
{
int fl = gi(), x = gi(), y = gi();
if (fl == 1) printf("%d
", getans(x, y, 1, n, 1).ans);//如果是要求答案就输出答案
else modify(x, y, 1, n, 1);//否则就进行修改
}
return 0;
}