zoukankan      html  css  js  c++  java
  • 题解【洛谷P3627】[APIO2009]抢掠计划

    题面

    首先比较容易发现一个性质:

    如果可以进入一个强连通分量,那么这个强连通分量内的所有点就都可以被走到。

    于是我们就可以考虑对整张图进行 Tarjan 缩点,每一个强连通分量的点权为这个强连通分量内部所有点的点权,这样整张图就变成了一个 DAG。

    那么用 SPFA 跑一遍最长路,最后直接对 (dis[)每个酒吧所在的强连通分量编号(]) 取一个 (max) 即为答案。

    注意实现上的一些细节。

    #include <bits/stdc++.h>
    #define DEBUG fprintf(stderr, "Passing [%s] line %d
    ", __FUNCTION__, __LINE__)
    #define File(x) freopen(x".in","r",stdin); freopen(x".out","w",stdout)
    
    using namespace std;
    
    typedef long long LL;
    typedef pair <int, int> PII;
    typedef pair <int, PII> PIII;
    
    inline int gi()
    {
    	int f = 1, x = 0; char c = getchar();
    	while (c < '0' || c > '9') {if (c == '-') f = -1; c = getchar();}
    	while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
    	return f * x;
    }
    
    inline LL gl()
    {
    	LL f = 1, x = 0; char c = getchar();
    	while (c < '0' || c > '9') {if (c == '-') f = -1; c = getchar();}
    	while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
    	return f * x;
    }
    
    const int INF = 0x3f3f3f3f, N = 1000003, M = N << 1;
    
    int n, m;
    int dfn[N], low[N], tim, stk[N], topp, scc_cnt, sz[N], id[N];
    bool in_stk[N];
    int tot, head[N], headc[N], ver[M], nxt[M], edge[N];
    int a[N];
    int S, P;
    int bar[N];
    
    inline void add(int u, int v)
    {
    	ver[++tot] = v, nxt[tot] = head[u], head[u] = tot;
    }
    
    inline void add1(int u, int v, int w)
    {
    	ver[++tot] = v, edge[tot] = w, nxt[tot] = headc[u], headc[u] = tot;
    }
    
    void Tarjan(int u)
    {
    	dfn[u] = low[u] = ++tim, stk[++topp] = u, in_stk[u] = true;
    	for (int i = head[u]; i; i = nxt[i])
    	{
    		int v = ver[i];
    		if (!dfn[v])
    		{
    			Tarjan(v);
    			low[u] = min(low[u], low[v]);
    		}
    		else if (in_stk[v]) low[u] = min(low[u], dfn[v]);
    	}
    	if (dfn[u] == low[u])
    	{
    		int y = -1;
    		++scc_cnt;
    		do
    		{
    			y = stk[topp--];
    			in_stk[y] = false;
    			sz[scc_cnt] += a[y];
    			id[y] = scc_cnt;
    		} while (y != u);
    	}
    }
    
    int dis[N];
    bool vis[N];
    
    inline void SPFA(int s)
    {
    	dis[s] = sz[s];
    	vis[s] = true;
    	queue <int> q;
    	q.push(s);
    	while (!q.empty())
    	{
    		int u = q.front(); q.pop(); vis[u] = false;
    		for (int i = headc[u]; i; i = nxt[i])
    		{
    			int v = ver[i], w = edge[i];
    			if (dis[v] < dis[u] + w)
    			{
    				dis[v] = dis[u] + w;
    				if (!vis[v])
    					vis[v] = true, q.push(v);
    			}
    		}
    	}
    }
    
    int main()
    {
            n = gi(), m = gi();
    	for (int i = 1; i <= m; i+=1)
    	{
    		int u = gi(), v = gi();
    		add(u, v);
    	}
    	for (int i = 1; i <= n; i+=1) a[i] = gi();
    	S = gi(), P = gi();
    	for (int i = 1; i <= P; i+=1) bar[i] = gi();
    	for (int i = 1; i <= n; i+=1) if (!dfn[i]) Tarjan(i);
    	for (int u = 1; u <= n; u+=1)
    		for (int i = head[u]; i; i = nxt[i])
    		{
    			int v = ver[i];
    			if (id[u] != id[v])
    				add1(id[u], id[v], sz[id[v]]);
    		}
    	SPFA(id[S]);
    	int ans = 0;
    	for (int i = 1; i <= P; i+=1) ans = max(ans, dis[id[bar[i]]]);
    	printf("%d
    ", ans);
    	return 0;
    }
    
  • 相关阅读:
    Vue异步数据交互 promise axios async fetch
    JS数组或对象转为JSON字符换 JavaScript JSON.stringify()
    JS返回数组的最大值与最小值
    Error: Cannot find module './application'
    Express框架
    NodeJS项目制作流程
    模板引擎art-template
    基于NodeJS的网络响应原理与HTTP协议
    leetcode 953. 验证外星语词典 做题笔记
    leetcode 771. 宝石与石头 做题笔记
  • 原文地址:https://www.cnblogs.com/xsl19/p/12944984.html
Copyright © 2011-2022 走看看