zoukankan      html  css  js  c++  java
  • Matlab-6:解非线性方程组newton迭代法

    函数文件:

     1 function x=newton_Iterative_method(f,n,Initial)
     2 x0=Initial;
     3 tol=1e-11;
     4 x1=x0-Jacobian(f,n,x0)F(f,x0);
     5 while (norm(x1-x0,2)>tol)
     6     %数值解的2范数是否在误差范围内
     7     x0=x1;
     8     x1=x0-Jacobian(f,n,x0)F(f,x0);
     9 end
    10 x=x1;%不动点
    11 function g=Jacobian(f,n,a)
    12 %求解任意矩阵的雅可比矩阵
    13 %%
    14 syms x y;
    15  F(1:n,1)=jacobian(f,x);
    16   F(1:n,2)=jacobian(f,y);
    17  g=vpa(subs(F,{'x','y'},{a(1),a(2)},6));
    18  %%
    19     function h=F(f,a)
    20   h=vpa(subs(f,{'x','y'},{a(1),a(2)}));

    脚本文件:

    tic;
    clear
    clc
    syms x y;
    h='[x^2+y^2-4;x^2-y^2-1]';
    initial_value=[1.6;1.2];
    n=2;%方程组的未知数的个数
    g=newton_Iterative_method(h,n,initial_value)
    toc;

    算法推导:

  • 相关阅读:
    CentOS7.4部署Python3+Django+uWSGI+Nginx
    测试:ATM
    JDBC_增删改
    HTTP请求状态码
    Servlet2
    Java日期时间3
    Servlet1
    安装Tomcat
    Java日期时间2
    广度优先遍历
  • 原文地址:https://www.cnblogs.com/xtu-hudongdong/p/6506045.html
Copyright © 2011-2022 走看看