zoukankan      html  css  js  c++  java
  • [LC] 692. Top K Frequent Words

    Given a non-empty list of words, return the k most frequent elements.

    Your answer should be sorted by frequency from highest to lowest. If two words have the same frequency, then the word with the lower alphabetical order comes first.

    Example 1:

    Input: ["i", "love", "leetcode", "i", "love", "coding"], k = 2
    Output: ["i", "love"]
    Explanation: "i" and "love" are the two most frequent words.
        Note that "i" comes before "love" due to a lower alphabetical order.
    

    Example 2:

    Input: ["the", "day", "is", "sunny", "the", "the", "the", "sunny", "is", "is"], k = 4
    Output: ["the", "is", "sunny", "day"]
    Explanation: "the", "is", "sunny" and "day" are the four most frequent words,
        with the number of occurrence being 4, 3, 2 and 1 respectively.
    

    Note:

    1. You may assume k is always valid, 1 ≤ k ≤ number of unique elements.
    2. Input words contain only lowercase letters.

    Follow up:

    1. Try to solve it in O(n log k) time and O(n) extra space.
     1 import collections
     2 import heapq
     3 
     4 class Element(object):
     5     def __init__(self, word, freq):
     6         self.word = word
     7         self.freq = freq
     8     
     9     def __lt__(self, other):
    10         if self.freq != other.freq:
    11             return self.freq < other.freq
    12         return other.word < self.word
    13 
    14 class Solution(object):
    15     def topKFrequent(self, words, k):
    16         """
    17         :type words: List[str]
    18         :type k: int
    19         :rtype: List[str]
    20         """
    21         my_dict = {}
    22         for word in words:
    23             if word in my_dict:
    24                 my_dict[word] += 1
    25             else:
    26                 my_dict[word] = 1 
    27         
    28         freqs = []
    29         for word, count in my_dict.items():
    30             heapq.heappush(freqs, (Element(word, count)))
    31             if len(freqs) > k:
    32                 heapq.heappop(freqs)
    33         res = []
    34         for _ in range(k):
    35             res.append(heapq.heappop(freqs).word)
    36         res.reverse()
    37         return res
    38     
    39         

    Solution 2:

    O(klogN)

    class Solution {
        public List<String> topKFrequent(String[] words, int k) {
        Map<String, Integer> map = new HashMap<>();
        for (String s: words) {
          map.put(s, map.getOrDefault(s, 0) + 1);
        }
        // keep a top frequency heap
        PriorityQueue<Map.Entry<String, Integer>> pq = new PriorityQueue<>((a, b) -> 
          a.getValue() == b.getValue() ? a.getKey().compareTo(b.getKey()): b.getValue() - a.getValue()
        );
        pq.addAll(map.entrySet());
        List<String> res = new ArrayList<>();
        int i = 0;
        while (i < k) {
            res.add(pq.poll().getKey());
            i += 1;
        }
        return res;        
        }
    }
  • 相关阅读:
    黑苹果崩溃恢复
    黑苹果声音小解决方法
    idea plugin 进度条
    phpstorm 插件
    awesome mac
    webstorm vue eslint 自动修正配置
    Laravel/php 一些调试技巧
    php ZipArchive 压缩整个文件夹
    laravel 模型事件 updated 触发条件
    php 开启 opcache 之后 require、include 还会每次都重新加载文件吗?
  • 原文地址:https://www.cnblogs.com/xuanlu/p/11577480.html
Copyright © 2011-2022 走看看