zoukankan      html  css  js  c++  java
  • [LC] 692. Top K Frequent Words

    Given a non-empty list of words, return the k most frequent elements.

    Your answer should be sorted by frequency from highest to lowest. If two words have the same frequency, then the word with the lower alphabetical order comes first.

    Example 1:

    Input: ["i", "love", "leetcode", "i", "love", "coding"], k = 2
    Output: ["i", "love"]
    Explanation: "i" and "love" are the two most frequent words.
        Note that "i" comes before "love" due to a lower alphabetical order.
    

    Example 2:

    Input: ["the", "day", "is", "sunny", "the", "the", "the", "sunny", "is", "is"], k = 4
    Output: ["the", "is", "sunny", "day"]
    Explanation: "the", "is", "sunny" and "day" are the four most frequent words,
        with the number of occurrence being 4, 3, 2 and 1 respectively.
    

    Note:

    1. You may assume k is always valid, 1 ≤ k ≤ number of unique elements.
    2. Input words contain only lowercase letters.

    Follow up:

    1. Try to solve it in O(n log k) time and O(n) extra space.
     1 import collections
     2 import heapq
     3 
     4 class Element(object):
     5     def __init__(self, word, freq):
     6         self.word = word
     7         self.freq = freq
     8     
     9     def __lt__(self, other):
    10         if self.freq != other.freq:
    11             return self.freq < other.freq
    12         return other.word < self.word
    13 
    14 class Solution(object):
    15     def topKFrequent(self, words, k):
    16         """
    17         :type words: List[str]
    18         :type k: int
    19         :rtype: List[str]
    20         """
    21         my_dict = {}
    22         for word in words:
    23             if word in my_dict:
    24                 my_dict[word] += 1
    25             else:
    26                 my_dict[word] = 1 
    27         
    28         freqs = []
    29         for word, count in my_dict.items():
    30             heapq.heappush(freqs, (Element(word, count)))
    31             if len(freqs) > k:
    32                 heapq.heappop(freqs)
    33         res = []
    34         for _ in range(k):
    35             res.append(heapq.heappop(freqs).word)
    36         res.reverse()
    37         return res
    38     
    39         

    Solution 2:

    O(klogN)

    class Solution {
        public List<String> topKFrequent(String[] words, int k) {
        Map<String, Integer> map = new HashMap<>();
        for (String s: words) {
          map.put(s, map.getOrDefault(s, 0) + 1);
        }
        // keep a top frequency heap
        PriorityQueue<Map.Entry<String, Integer>> pq = new PriorityQueue<>((a, b) -> 
          a.getValue() == b.getValue() ? a.getKey().compareTo(b.getKey()): b.getValue() - a.getValue()
        );
        pq.addAll(map.entrySet());
        List<String> res = new ArrayList<>();
        int i = 0;
        while (i < k) {
            res.add(pq.poll().getKey());
            i += 1;
        }
        return res;        
        }
    }
  • 相关阅读:
    数据类型及用法
    NFS与SSH
    nginx服务,nginx反向代理
    rpm软件包管理
    磁盘分区,文件系统,软链接和硬链接,内存和进程管理
    Linux常用命令,文件目录和权限管理
    操作系统与网络协议(day3)
    计算机基础之硬件简介(Day2)
    QT写串口
    485传输
  • 原文地址:https://www.cnblogs.com/xuanlu/p/11577480.html
Copyright © 2011-2022 走看看