zoukankan      html  css  js  c++  java
  • [LC] 692. Top K Frequent Words

    Given a non-empty list of words, return the k most frequent elements.

    Your answer should be sorted by frequency from highest to lowest. If two words have the same frequency, then the word with the lower alphabetical order comes first.

    Example 1:

    Input: ["i", "love", "leetcode", "i", "love", "coding"], k = 2
    Output: ["i", "love"]
    Explanation: "i" and "love" are the two most frequent words.
        Note that "i" comes before "love" due to a lower alphabetical order.
    

    Example 2:

    Input: ["the", "day", "is", "sunny", "the", "the", "the", "sunny", "is", "is"], k = 4
    Output: ["the", "is", "sunny", "day"]
    Explanation: "the", "is", "sunny" and "day" are the four most frequent words,
        with the number of occurrence being 4, 3, 2 and 1 respectively.
    

    Note:

    1. You may assume k is always valid, 1 ≤ k ≤ number of unique elements.
    2. Input words contain only lowercase letters.

    Follow up:

    1. Try to solve it in O(n log k) time and O(n) extra space.
     1 import collections
     2 import heapq
     3 
     4 class Element(object):
     5     def __init__(self, word, freq):
     6         self.word = word
     7         self.freq = freq
     8     
     9     def __lt__(self, other):
    10         if self.freq != other.freq:
    11             return self.freq < other.freq
    12         return other.word < self.word
    13 
    14 class Solution(object):
    15     def topKFrequent(self, words, k):
    16         """
    17         :type words: List[str]
    18         :type k: int
    19         :rtype: List[str]
    20         """
    21         my_dict = {}
    22         for word in words:
    23             if word in my_dict:
    24                 my_dict[word] += 1
    25             else:
    26                 my_dict[word] = 1 
    27         
    28         freqs = []
    29         for word, count in my_dict.items():
    30             heapq.heappush(freqs, (Element(word, count)))
    31             if len(freqs) > k:
    32                 heapq.heappop(freqs)
    33         res = []
    34         for _ in range(k):
    35             res.append(heapq.heappop(freqs).word)
    36         res.reverse()
    37         return res
    38     
    39         

    Solution 2:

    O(klogN)

    class Solution {
        public List<String> topKFrequent(String[] words, int k) {
        Map<String, Integer> map = new HashMap<>();
        for (String s: words) {
          map.put(s, map.getOrDefault(s, 0) + 1);
        }
        // keep a top frequency heap
        PriorityQueue<Map.Entry<String, Integer>> pq = new PriorityQueue<>((a, b) -> 
          a.getValue() == b.getValue() ? a.getKey().compareTo(b.getKey()): b.getValue() - a.getValue()
        );
        pq.addAll(map.entrySet());
        List<String> res = new ArrayList<>();
        int i = 0;
        while (i < k) {
            res.add(pq.poll().getKey());
            i += 1;
        }
        return res;        
        }
    }
  • 相关阅读:
    新增更改app.Config的值
    repeater DropDownList 事件
    ASP.NET 状态服务 及 session丢失问题解决方案总结
    js动态添加table的行
    各大社交网络首页黄金区输入框提示(facebook,人人网,开心网)
    Color theme installation for Emacs in Windows 7
    乐观锁和悲观锁
    google的落寞
    印象深刻的网络实验课
    未知和恐惧
  • 原文地址:https://www.cnblogs.com/xuanlu/p/11577480.html
Copyright © 2011-2022 走看看