zoukankan      html  css  js  c++  java
  • TensorFlow使用记录 (十四): Multi-task to MNIST + Fashion MNIST

    前言

    后面工作中有个较重要的 task 是将 YOLOV3 目标检测和 LanNet 车道线检测和到一个网络中训练,特别的是,这两部分数据来自于不同的数据源。这和我之前在 caffe 环境下训练检测整个车身的同时还要训练车头车尾类似,只不过环境变更到了 tensorflow,尴尬的是,这个月才真正接触 TF。因此,先拿 MNIST Fashion_MNIST 这两个数据集来练练手了。

    数据预处理

    MNIST 和 Fashion_MNIST 这两个数据集下载下来是压缩文件格式的,为了方便后面使用,先用一下代码转一下,不要问我为啥转。。。除了官方的我就见过这种的

    #!/usr/bin/env python
    # -*- coding: utf-8 -*-
    # ================================================================
    # @Time    : 2019/10/25 10:50
    # @Author  : YangTao
    # @Site    : 
    # @File    : process.py
    # @IDE: PyCharm Community Edition
    # ================================================================
    import os
    
    # MNIST
    MNIST = '../../MNIST_data'
    def convert(imgf, labelf, outf, n):
      f = open(imgf, "rb")
      o = open(outf, "w")
      l = open(labelf, "rb")
    
      f.read(16)
      l.read(8)
      images = []
    
      for i in range(n):
        image = [ord(l.read(1))]
        for j in range(28*28):
          image.append(ord(f.read(1)))
        images.append(image)
    
      for image in images:
        o.write(",".join(str(pix) for pix in image)+"
    ")
      f.close()
      o.close()
      l.close()
    
    convert(os.path.join(MNIST, "train-images-idx3-ubyte"), os.path.join(MNIST, "train-labels-idx1-ubyte"), os.path.join(MNIST, "mnist_train.csv"), 60000)
    convert(os.path.join(MNIST, "t10k-images-idx3-ubyte"), os.path.join(MNIST, "t10k-labels-idx1-ubyte"), os.path.join(MNIST, "mnist_test.csv"), 10000)
    View Code

    数据层

    #!/usr/bin/env python
    # -*- coding: utf-8 -*-
    # ================================================================
    # @Time    : 2019/10/25 13:50
    # @Author  : YangTao
    # @Site    :
    # @File    : dataset.py
    # @IDE: PyCharm Community Edition
    # ================================================================
    import os
    import numpy as np
    import tensorflow as tf
    from matplotlib import pyplot as plt
    
    F_class_names = ['T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
                   'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
    
    class MNISTplusFashion(object):
        data_dirM = './MNIST'
        data_dirF = './F_MNIST'
    
        def __init__(self, phase, batch_size=10):
            self.num_classes = 10
            self.train_input_size_h = 28
            self.train_input_size_w = 28
            self.batch_size = batch_size
            if phase == 'train':
                self.dataM = open(os.path.join(self.data_dirM, 'mnist_train.csv'), 'r').read().split('
    ')[:-1]
                self.flagM = np.zeros(shape=(len(self.dataM)), dtype=np.int)
                self.dataF = open(os.path.join(self.data_dirF, 'fashion_mnist_train.csv'), 'r').read().split('
    ')[:-1]
                self.flagF = np.ones(shape=(len(self.dataF)), dtype=np.int)
            elif phase == 'val':
                self.dataM = open(os.path.join(self.data_dirM, 'mnist_test.csv'), 'r').read().split('
    ')[:-1]
                self.flagM = np.zeros(shape=(len(self.dataM)), dtype=np.int)
                self.dataF = open(os.path.join(self.data_dirF, 'fashion_mnist_test.csv'), 'r').read().split('
    ')[:-1]
                self.flagF = np.ones(shape=(len(self.dataF)), dtype=np.int)
            self.dataM = [d.split(',') for d in self.dataM]
            self.dataF = [d.split(',') for d in self.dataF]
    
            data = self.dataM + self.dataF
            flag = np.concatenate([self.flagM ,self.flagF],axis=0)
            self.num_samples = len(flag)  # dataset size
            self.num_batchs = int(np.ceil(self.num_samples / self.batch_size))  # 向上取整
            self.batch_count = 0  # batch index
    
            # np.random.seed(1)
            random_idx = np.random.permutation(self.num_samples)
            self.data = []
            for index in random_idx:
                self.data.append(data[index] + [flag[index]])
    
        def __iter__(self):
            return self
    
        def __next__(self):
            with tf.device('/cpu:0'):
                batch_image = np.zeros((self.batch_size, self.train_input_size_h, self.train_input_size_w, 1))
                batch_label = np.zeros((self.batch_size, self.num_classes))
                batch_tag = np.zeros((self.batch_size, 1))
                num = 0  # sample in one batch's index
                if self.batch_count < self.num_batchs:
                    while num < self.batch_size:
                        index = self.batch_count * self.batch_size + num
                        if index >= self.num_samples:  # 从头开始
                            index -= self.num_samples
    
                        batch_image[num, :, :, :] = np.array(
                            self.data[index][1:-1]).reshape(
                                self.train_input_size_h, self.train_input_size_w,1
                            ).astype(np.float32) / 255.0
                        # ======================
                        # smooth onehot label
                        onehot = np.zeros(self.num_classes, dtype=np.float)
                        onehot[int(self.data[index][0])] = 1.0
                        uniform_distribution = np.full(self.num_classes, 1.0 / self.num_classes)
                        deta = 0.01
                        smooth_onehot = onehot * (1 - deta) + deta * uniform_distribution
                        # ======================
                        batch_label[num, :] = smooth_onehot # self.data[index][0]
                        batch_tag[num] = self.data[index][-1]
                        num += 1
                    self.batch_count += 1
                    return batch_image, batch_label, batch_tag
                else:
                    self.batch_count = 0
                    np.random.shuffle(self.data)
                    raise StopIteration
    
        def __len__(self):
            return self.num_batchs
    
    def show_batch(img_batch):
      grid_image = img_batch[0,:,:,0]
      for idx, img in enumerate(img_batch):
        if idx == 0:
          continue
        grid_image = np.hstack((grid_image, img[:,:,0]))
    
      plt.imshow(grid_image)
    
      plt.title('Batch from dataloader')
    
    if __name__ == "__main__":
        val_data = MNISTplusFashion(phase='val', batch_size=10)
        for idx in range(val_data.num_batchs):
            batch_image, batch_label, batch_tag = val_data.__next__()
            print("sample %d," % idx, batch_image.shape, batch_label.shape, batch_tag.shape)
            plt.figure()
            show_batch(batch_image)
            plt.axis('off')
            plt.ioff()
            plt.show()
    View Code

    这里简单讲 MNIST 和 Fashion_MNIST 按照 1:1 concat 到一起后打乱输出了,每个 batch(iter) 返回三个变量:

    """
    batch_image: batch x 28 x 28 x 1
    batch_label: batch x 10, smooth one-hot label
    batch_tag:   batch x 1, 0 is mnist, 1 is fashion_mnist
    """

    网络训练

    #!/usr/bin/env python
    # -*- coding: utf-8 -*-
    # ================================================================
    # @Time    : 2019/10/25 15:30
    # @Author  : YangTao
    # @Site    :
    # @File    : dataset.py
    # @IDE: PyCharm Community Edition
    # ================================================================
    
    import tensorflow as tf
    from tqdm import tqdm
    import numpy as np
    from matplotlib import pyplot as plt
    from dataset import MNISTplusFashion, show_batch
    
    print(tf.__version__)
    # 1. create data
    trainset = MNISTplusFashion(phase='train', batch_size=100)
    testset = MNISTplusFashion(phase='val', batch_size=20000)
    
    with tf.variable_scope('Input'):
        tf_x = tf.placeholder(dtype=tf.float32, shape=[None, 28, 28, 1], name='x')
        tf_y = tf.placeholder(dtype=tf.float32, shape=[None, 10], name='y')
        tf_flag = tf.placeholder(dtype=tf.float32, shape=[None, 1], name='flag')
        is_training = tf.placeholder(dtype=tf.bool, shape=None)
        global_step = tf.Variable(1.0, dtype=tf.float64, trainable=False, name='global_step')
    
    idxM = tf.where(tf.equal(tf_flag, 0))[:,0]
    idxF = tf.where(tf.equal(tf_flag, 1))[:,0]
    tf_yM = tf.gather(tf_y, idxM)
    tf_yF= tf.gather(tf_y, idxF)
    
    # 2. define Network
    with tf.variable_scope('Net'):
        # conv1 = tf.layers.conv2d(inputs=tf_x, filters=96, kernel_size=3,
        #                          strides=1, padding='same', activation=tf.nn.relu) # 96x28x28
        # conv2 = tf.layers.conv2d(inputs=conv1, filters=96, kernel_size=3,
        #                          strides=1, padding='same', activation=tf.nn.relu)  # 96x28x28
        # conv3 = tf.layers.conv2d(inputs=conv2, filters=96, kernel_size=3,
        #                          strides=2, padding='same', activation=tf.nn.relu)  # 96x14x14
        # conv4 = tf.layers.conv2d(inputs=conv3, filters=192, kernel_size=3,
        #                          strides=1, padding='same', activation=tf.nn.relu)  # 192x14x14
        # conv5 = tf.layers.conv2d(inputs=conv4, filters=192, kernel_size=3,
        #                          strides=1, padding='same', activation=tf.nn.relu)  # 192x14x14
        # conv6 = tf.layers.conv2d(inputs=conv5, filters=192, kernel_size=3,
        #                          strides=2, padding='same', activation=tf.nn.relu)  # 192x7x7
        # conv7 = tf.layers.conv2d(inputs=conv6, filters=192, kernel_size=3,
        #                          strides=1, activation=tf.nn.relu)  # 192x5x5
        # conv8 = tf.layers.conv2d(inputs=conv7, filters=192, kernel_size=1,
        #                          strides=1, activation=tf.nn.relu)  # 192x5x5
        # classifier = tf.layers.conv2d(inputs=conv8, filters=10, kernel_size=1,
        #                          strides=1, activation=tf.nn.relu)  # 10x5x5
        # predict = tf.layers.average_pooling2d(inputs=classifier, pool_size=5, strides=1)
        # predict = tf.reshape(predict, [-1, 1])
        # ======================
        conv1 = tf.layers.conv2d(inputs=tf_x, filters=32, kernel_size=5,
                                 strides=1, padding='same', activation=tf.nn.relu)  # 32x28x28
        pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=2, strides=2) # 32x14x14
        conv2 = tf.layers.conv2d(pool1, 64, 3, 1, 'same', activation=tf.nn.relu) # 64x14x14
        pool2 = tf.layers.max_pooling2d(conv2, 2, 2) # 64x7x7
        pool2_flat = tf.reshape(pool2, [-1, 7*7*64])
        pool2_flatM = tf.gather(pool2_flat, idxM)
        pool2_flatF = tf.gather(pool2_flat, idxF)
        with tf.variable_scope('MNIST'):
            fc1M = tf.layers.dense(pool2_flatM, 1024, tf.nn.relu)
            fc1M = tf.layers.dropout(fc1M, rate=0.5, training=is_training)
            fc2M = tf.layers.dense(fc1M, 512, tf.nn.relu)
            fc2M = tf.layers.dropout(fc2M, rate=0.5, training=is_training)
            predictM = tf.layers.dense(fc2M, 10)
        with tf.variable_scope('F_MNIST'):
            fc1F = tf.layers.dense(pool2_flatF, 1024, tf.nn.relu)
            fc1F = tf.layers.dropout(fc1F, rate=0.5, training=is_training)
            fc2F = tf.layers.dense(fc1F, 521, tf.nn.relu)
            fc2F = tf.layers.dropout(fc2F, rate=0.5, training=is_training)
            predictF = tf.layers.dense(fc2F, 10)
    
    # 3. define loss & accuracy
    with tf.name_scope('loss'):
        lossM = tf.losses.softmax_cross_entropy(onehot_labels=tf_yM, logits=predictM, label_smoothing=0.01)
        tf.summary.scalar('lossM', lossM)
        lossF = tf.losses.softmax_cross_entropy(onehot_labels=tf_yF, logits=predictF, label_smoothing=0.01)
        tf.summary.scalar('lossF', lossF)
        loss = lossM + lossF
        tf.summary.scalar('loss', loss)
    
    with tf.name_scope('accuracy'):
        # tf.metrics.accuracy() 返回 累计[上次的平均accuracy, 这次的平均accuracy]
        accuracyM = tf.metrics.accuracy(labels=tf.argmax(tf_yM, axis=1), predictions=tf.argmax(predictM, axis=1))[1]
        tf.summary.scalar('accuracyM', accuracyM)
        accuracyF = tf.metrics.accuracy(labels=tf.argmax(tf_yF, axis=1), predictions=tf.argmax(predictF, axis=1))[1]
        tf.summary.scalar('accuracyF', accuracyF)
    
    # 4. define optimizer
    with tf.name_scope('train'):
        optimizer_op = tf.train.AdamOptimizer(1e-4).minimize(loss, global_step=global_step)
    
    # 5. initialize
    init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer())
    
    # 6.train
    saver = tf.train.Saver()
    save_path = './cnn_mnist.ckpt'
    
    # Set sess configuration
    # ============================== config GPU
    sess_config = tf.ConfigProto(allow_soft_placement=True)
    # sess_config.gpu_options.per_process_gpu_memory_fraction = 0.95
    sess_config.gpu_options.allow_growth = True
    sess_config.gpu_options.allocator_type = 'BFC'
    # ==============================
    
    with tf.Session(config=sess_config) as sess:
        sess.run(init_op)
        # =================
        merge_op = tf.summary.merge_all()
        train_writer = tf.summary.FileWriter('logs/train', sess.graph)
        test_writer = tf.summary.FileWriter('logs/test', sess.graph)
        # tensorboard --logdir=logs --host=127.0.0.1
        # =================
        for epoch in range(20):
            pbar = tqdm(trainset)
            train_epoch_loss = []
            for train_data in pbar:
                _, ls, train_output, global_step_val = sess.run([optimizer_op, loss, merge_op, global_step],
                                               feed_dict={tf_x: train_data[0], tf_y: train_data[1],
                                                          tf_flag: train_data[2], is_training: True})
                train_writer.add_summary(train_output, global_step=global_step_val)
                pbar.set_description(("train loss:{:.4f}").format(ls))
            for test_data in testset:
                acc_testM, acc_testF, test_ouput  = sess.run([accuracyM, accuracyF, merge_op],
                                                 feed_dict={tf_x: test_data[0], tf_y: test_data[1],
                                                            tf_flag: test_data[2], is_training: False})
                print('epoch: ', epoch, ' | test accuracyM: {:.3f}, test accuracyF: {:.3f}'.format(acc_testM, acc_testF))
                sess.run(tf.local_variables_initializer()) # 不加上这句的话 accuracy 就是个累积平均值了
                test_writer.add_summary(test_ouput, global_step=global_step_val)
        saver.save(sess, save_path)
    View Code
    """
    train loss:0.9148: 100%|██████████| 1200/1200 [01:00<00:00, 19.70it/s]
    epoch:  0  | test accuracyM: 0.895, test accuracyF: 0.769
    train loss:0.9703: 100%|██████████| 1200/1200 [00:57<00:00, 20.88it/s]
    epoch:  1  | test accuracyM: 0.974, test accuracyF: 0.858
    train loss:0.6034: 100%|██████████| 1200/1200 [00:57<00:00, 20.92it/s]
    epoch:  2  | test accuracyM: 0.982, test accuracyF: 0.879
    train loss:0.5603: 100%|██████████| 1200/1200 [01:00<00:00, 19.84it/s]
    epoch:  3  | test accuracyM: 0.986, test accuracyF: 0.890
    train loss:0.6326: 100%|██████████| 1200/1200 [01:01<00:00, 19.61it/s]
    epoch:  4  | test accuracyM: 0.989, test accuracyF: 0.898
    train loss:0.6328: 100%|██████████| 1200/1200 [00:57<00:00, 20.91it/s]
    epoch:  5  | test accuracyM: 0.990, test accuracyF: 0.906
    train loss:0.4472: 100%|██████████| 1200/1200 [01:01<00:00, 19.64it/s]
    epoch:  6  | test accuracyM: 0.992, test accuracyF: 0.909
    train loss:0.7271: 100%|██████████| 1200/1200 [01:01<00:00, 19.58it/s]
    epoch:  7  | test accuracyM: 0.993, test accuracyF: 0.914
    train loss:0.4884: 100%|██████████| 1200/1200 [00:57<00:00, 20.95it/s]
    epoch:  8  | test accuracyM: 0.994, test accuracyF: 0.918
    train loss:0.6024: 100%|██████████| 1200/1200 [01:01<00:00, 19.59it/s]
    epoch:  9  | test accuracyM: 0.995, test accuracyF: 0.923
    train loss:0.4632: 100%|██████████| 1200/1200 [01:02<00:00, 19.24it/s]
    epoch:  10  | test accuracyM: 0.995, test accuracyF: 0.927
    train loss:0.5326: 100%|██████████| 1200/1200 [01:03<00:00, 19.00it/s]
    epoch:  11  | test accuracyM: 0.996, test accuracyF: 0.930
    train loss:0.5155: 100%|██████████| 1200/1200 [01:02<00:00, 20.04it/s]
    epoch:  12  | test accuracyM: 0.997, test accuracyF: 0.934
    train loss:0.4652: 100%|██████████| 1200/1200 [01:00<00:00, 19.77it/s]
    epoch:  13  | test accuracyM: 0.997, test accuracyF: 0.936
    train loss:0.5368: 100%|██████████| 1200/1200 [00:58<00:00, 20.63it/s]
    epoch:  14  | test accuracyM: 0.997, test accuracyF: 0.942
    train loss:0.3480: 100%|██████████| 1200/1200 [01:01<00:00, 19.38it/s]
    epoch:  15  | test accuracyM: 0.998, test accuracyF: 0.942
    train loss:0.3544: 100%|██████████| 1200/1200 [01:09<00:00, 17.75it/s]
    epoch:  16  | test accuracyM: 0.998, test accuracyF: 0.947
    train loss:0.4082: 100%|██████████| 1200/1200 [01:02<00:00, 21.23it/s]
    epoch:  17  | test accuracyM: 0.998, test accuracyF: 0.949
    train loss:0.4467: 100%|██████████| 1200/1200 [00:59<00:00, 20.02it/s]
    epoch:  18  | test accuracyM: 0.998, test accuracyF: 0.952
    train loss:0.4393: 100%|██████████| 1200/1200 [01:00<00:00, 19.92it/s]
    epoch:  19  | test accuracyM: 0.999, test accuracyF: 0.955
    groundtruth: [5 0 3 4 2 4 6 5 1 8]
    predict:     [5 0 3 4 2 4 6 5 1 8]
    """

    可以看出,Fashion_MNIST 数据集更难一点(accuracy 更低),因此可以考虑调整两个数据集的比例。

  • 相关阅读:
    使用 Apache OpenJPA 开发 EJB 3.0 应用,第 3 部分: 实体继承
    使用 Apache OpenJPA 开发 EJB 3.0 应用,第 2 部分: 开发第一个 Open JPA 应用
    使用 Apache OpenJPA 开发 EJB 3.0 应用,第 6 部分: 处理实体生命周期事件的回调
    http://www.oschina.net/question/129540_20547
    tomcat6实现远程调试
    FluorineFx和Flex配置
    今天才开通这个博客呀!
    vue中install方法
    Vue.nextTick 的原理和用途
    vue3.0中使用nextTick
  • 原文地址:https://www.cnblogs.com/xuanyuyt/p/11753427.html
Copyright © 2011-2022 走看看