已知$a,b,cinmathrm{R},a+b+c=0,abc=1.;;(1)$证明:$ab+bc+ca<0;(2)$证明:$max{a,b,c}geqslantsqrt[3]{4}.$
(1)法一:$2(ab+bc+ca)=(a+b+c)2-(a2+b2+c2)=0-(a2+b2+c^2)<0 $(贵老师的)
法二:
情况ding{192}当(c<0)时,此时(a+b=-c>0,ab=frac{1}{c}<0,)
(Rightarrow ab+bc+ca=ab+(a+b)c=ab-(a+b)^2<0)
情况ding{193}当(c>0)时,此时(a+b=-c<0,ab=frac{1}{c}>0,Rightarrow frac{1}{ab}=(-a)+(-b)geqslant 2sqrt{ab}Rightarrow (sqrt{ab})^3leqslant frac{1}{2}Rightarrow ab<1)
(Rightarrow ab+bc+ca=ab+(a+b)c=ab+frac{(a+b)}{ab}=ab-frac{1}{a^2b^2}=frac{a^3b^3-1}{a^2b^2}=frac{(ab-1)(a^2b^2+ab+1)}{a^2b^2}<0)
(2)法一:由题可知(a,b,c)为一正两负,不妨设(a>0,b<0,c<0,)那么
(Rightarrow (a+b)ab+1=0Rightarrow a^2+ab+frac{1}{b}=0)
构造函数(f(x)=x^2+bx+frac{1}{b},)那么方程(f(x)=0)有两个根(x_1<0<x_2=a)
而(f(sqrt[3]{4})=(sqrt[3]{4})^2-(sqrt[3]{4}(-b)+frac{1}{-b})leqslant (sqrt[3]{4})^2-2sqrt{sqrt[3]{4}}=2^{frac{4}{3}}-2^{frac{4}{3}}=0)
(Rightarrow ageqslant sqrt[3]{4})
法二:(吴老师的)由题可知(a,b,c)为一正两负,不妨设(a>0,b<0,c<0,)那么
(a=(-b)+(-c),a=frac{1}{bc})
(Rightarrow a=(-b)+(-c)geqslant 2sqrt{bc})
(Rightarrow a^2geqslant 4frac{1}{a})
(Rightarrow ageqslant sqrt[3]{4})