zoukankan      html  css  js  c++  java
  • 成都市2020-2021学年度高二(上)期末理科数学22题(2)的另类解法(点差法的哥哥与姐姐)


    点$E$为$x$轴正半轴上的一点,过点$E$的直线交抛物线$C$:$y^2=4x$于$A$、$B$两点,$F$为$C$的焦点,

    直线$AF$、$BF$分别与抛物线$C$交于异于$A$、$B$的$P$、$Q$两点.当直线$AB$,$PQ$的斜率都存在时,分别记为$k_{_1}$、$k_{_2}$.

    若$k_{_2}=2k_{_1}$,求点$E$的坐标.




    另类解法:

    (A(frac{y^2_{_A}}{4})(y_{_A}))(B(frac{y^2_{_B}}{4})(y_{_B}))(P(frac{y^2_{_P}}{4})(y_{_P}))(Q(frac{y^2_{_Q}}{4})(y_{_Q}))(E(t)(0)),则

    (A)(F)(P)三点共线(RightarrowcdotsRightarrow y_{_A}cdot y_{_p}=-4cdots(1))

    (B)(F)(Q)三点共线(RightarrowcdotsRightarrow y_{_B}cdot y_{_Q}=-4cdots(2))

    (A)(E)(B)三点共线(Rightarrowfrac{y_{_A}}{frac{y^2_{_A}}{4}-t}=frac{y_{_B}}{frac{y^2_{_B}}{4}-t}RightarrowcdotsRightarrow y_{_A}cdot y_{_B}=-4tcdots(3))

    (k_{_2}=2k_{_1}Rightarrow frac{y_{_P}-y_{_Q}}{frac{y^2_{_P}}{4}-frac{y^2_{_Q}}{4}}=2cdotfrac{y_{_A}-y_{_B}}{frac{y^2_{_A}}{4}-frac{y^2_{_B}}{4}}RightarrowcdotsRightarrow y_{_A}+y_{_B}=2(y_{_P}+y_{_Q})cdots(4))

    ((1))((2)(3)Rightarrow y_{_A}y_{_B}y_{_P}y_{_Q}=16Rightarrow y_{_P}y_{_Q}=frac{-4}{t}cdots(*))

    ((1))((2)Rightarrow y_{_A}+y_{_B}=-4(frac{1}{y_{_P}}+frac{1}{y_{_Q}})Rightarrow y_{_A}+y_{_B}=-4(frac{y_{_P}+y_{_Q}}{y_{_P}y_{_Q}})cdots( riangle))

    ((4))((*)( riangle))(t=2),即(E(2)(0))

  • 相关阅读:
    kindeditor 创建多个 取值方式
    新浪微博分享平台地址
    thinkphp 直接写SQL
    nginx下禁止目录运行php
    phpcms_v9 同步登陆的BUG
    yii framework 创建项目
    phpcms_v9 关闭debug
    ucenter忘记创始人密码简单解决方法
    XSS 常见手段
    如何在 C 中使用 64 位整数?
  • 原文地址:https://www.cnblogs.com/xuebajunlutiji/p/14337164.html
Copyright © 2011-2022 走看看