1 0-1背包
java代码:
1 //import java.util.ArrayList; 2 import java.util.Arrays; 3 4 public class Solution { 5 public static int[][] Bag(int W,int N, int wt[],int val[]){ 6 //初始化dp数组-定义状态 7 /*dp[i][w] 表⽰:对于前 i 个物品,当前背包的容量为 w 时,这种情况下可以装下的最⼤价值是 dp[i][w]*/ 8 int dp[][] = new int[N+1][W+1]; 9 for (int i = 0; i < dp.length; i++) { 10 Arrays.fill(dp[i],0); 11 } 12 //编写状态转移代码 13 for (int i = 1; i <= N; i++) { 14 for (int w = 1; w <= W; w++) { 15 if(w - wt[i-1] < 0){//容量不够,此时不装 16 dp[i][w] = dp[i-1][w]; 17 }else{//容量够,装入背包 18 dp[i][w]=Math.max(dp[i-1][w],//如果你没有把这第 i 个物品装⼊背包 19 dp[i-1][w-wt[i-1]] + val[i-1]);//如果你把这第 i 个物品装⼊了背包 20 } 21 } 22 } 23 //返回dp表 24 return dp; 25 } 26 27 public static void main(String[] args) { 28 int wt[] = new int[]{2,1,3}; 29 int val[] = new int[]{4,2,3}; 30 int W = 4,N = 3; 31 32 int res[][] = Bag(W,N,wt,val); 33 for (int i = 0; i < res.length; i++) { 34 System.out.println(Arrays.toString(res[i])); 35 } 36 } 37 }
结果: