zoukankan      html  css  js  c++  java
  • hdoj1006--Tick and Tick

    Problem Description
    The three hands of the clock are rotating every second and meeting each other many times everyday. Finally, they get bored of this and each of them would like to stay away from the other two. A hand is happy if it is at least D degrees from any of the rest. You are to calculate how much time in a day that all the hands are happy.
     
    Input
    The input contains many test cases. Each of them has a single line with a real number D between 0 and 120, inclusively. The input is terminated with a D of -1.
     
    Output
    For each D, print in a single line the percentage of time in a day that all of the hands are happy, accurate up to 3 decimal places.
     
    Sample Input
    0
    120
    90
    -1
     
    Sample Output
    100.000
    0.000
    6.251
     
    /////////////////////////////

    算法分析

    秒针(S): 1s 360/60= 6 度(degree)
    分针(M): 1s 360/60*60= 1/10度(degree)
    时针(H): 1s 360/60*60*12= 1/120度(degree)

    秒针与分针的相对速度为:
    V(M,S) = 6-1/10 = 59/10 d/s;
    同理, 时针与秒针 V(H,S) = 6-1/120 =719/120 d/s;
    V(H,M) = 1/10-1/120 = 11/120 d/s.

    秒针与分针的相遇周期为
    T(M,S)= 360/V(M,S)= 3600/59;
    同理, T(H,S)= 360/V(H,S)=43200/719;
    T(H,M)= 360/V(H,M)=43200/11;

    在一天24小时内,后12个小时与前12个小时情况完全相同,故只取12个小时即可。
    则12个小时总秒数
    T = 12h * 60m* 60s = 43200s

    秒针与分针的相遇次数为
    N(M,S)=T/T(M,S) = 59*12 = 708
    同理, N(H,S)=T/T(H,S) = 719
    N(H,M)=T/T(H,M) = 11

    由于周期性规律可知:
    假设秒针与分针之间的角度用函数F(t)表示,则 F(t)为某一时刻t两针之间的角度。
    F(t+n*T(M,S)) = F(t) , 其中n为自然数,
    同理, F(t+n*T(H,S)) = F(t)
    F(t+n*T(H,M)) = F(t)

    所以,我们只要计算出第一个周期内的各指针之间的幸福时间区段,再加上若干个各自周期后,仍为幸福区段。
    假设角度差至少为D时,秒针和分针才幸福,则在第一个周期T(M,S)内,
    D<= V(M,S)*t <= 360-D

    解得 t1=D/V(M,S)
    t2=(360-D)/V(M,S);
    根据周期性,
    happy(t ms) =(t1+n*T(M,S),t2+n*T(M,S)) 0 <= n < N(M,S);
    同理, happy(t hs ) =(t1+n*T(H,S),t2+n*T(H,S)) 0 <= n < N(H,S);
    happy(t hm) =(t1+n*T(H,M),t2+n*T(H,M)) 0 <= n < N(H,M);

    最后,求得三者的交集区间长度

    L = happy(t ms) X happy(t hs) X happy(t hm) ,(X表示关系交)即可。

        #include <iostream>  
        #include <iomanip>  
        using namespace std;  
        const int T = 360*120, NMS = 708,NHM = 11, NHS = 719;  //相遇次数
        const double F = 0.0466631;                            //F为调节系数,使得各区间段为准确值 
        const double hmlen = T*F/NHM,mslen = T*F/NMS,hslen = T*F/NHS;    
        struct  interval  
        {  
            double low,high;  
        };  
        interval andset(interval S1,interval S2)  
        {  
            interval zone;  
            zone.low  = S1.low > S2.low ? S1.low : S2.low;  
            zone.high = S1.high < S2.high ? S1.high : S2.high;  
            if( zone.low >= zone.high )  
                zone.low = zone.high = 0.0;  
            return zone;  
        }  
        int main()  
        {  
            int D=0;  
            while(cin>>D&&D!=-1)  
            {  
                double len = 0.0;  
                interval ms,hs,hm;  
    
                hm.low = hmlen*D/360 - hmlen;  
                hm.high = - hm.low -hmlen;  
    
                ms.low = mslen*D/360 - mslen;  
                ms.high = - ms.low -mslen;  
    
                hs.low = hslen*D/360 - hslen;  
                hs.high = - hs.low -hslen;  
    
                for(int i=0,j=0,k=0;i<NHM;i++)  
                {  
                    hm.low+=hmlen;  
                    hm.high+=hmlen;  
    
                    for(;j<NMS;j++)  
                    {  
                        ms.low+=mslen;  
                        ms.high+=mslen;  
    
                        interval temp1 = andset(hm,ms);  
                        if(temp1.low!=0||temp1.high!=0)  
                        {  
                            for(;k<NHS;k++)  
                            {  
                                hs.low+=hslen;  
                                hs.high+=hslen;  
    
                                interval temp2 = andset(temp1,hs);  
                                len+=temp2.high-temp2.low;  
                                if(hs.high>=temp1.high)  
                                {  
                                    hs.low-=hslen;  
                                    hs.high-=hslen;  
                                    break;  
                                }  
                            }  
                        }  
                        if(ms.high>=hm.high)  
                        {  
                             ms.low-=mslen;  
                             ms.high-=mslen;  
                             break;  
                        }  
                    }  
                }  
                cout<<setprecision(3)<<fixed<<len/(432*F)<<endl;  
            }  
            return 0;  
        }  
  • 相关阅读:
    display:inline-block 什么时候不会显示间隙?
    js数组算法题01
    redux中的reducer为什么必须(最好)是纯函数
    如何实现 token 加密
    已知如下代码,如何修改才能让图片宽度为 300px ?注意下面代码不可修改。
    分析比较 opacity: 0、visibility: hidden、display: none 优劣和适用场景
    Vue 的响应式原理中 Object.defineProperty 有什么缺陷?
    JAVA课程实验报告 实验二 Java面向对象程序设计
    Java课程实验报告 实验一 Java开发环境的熟悉
    [题解] Luogu P5641 【CSGRound2】开拓者的卓识
  • 原文地址:https://www.cnblogs.com/xueda120/p/3575399.html
Copyright © 2011-2022 走看看