zoukankan      html  css  js  c++  java
  • python基础2 -画图

    #!/usr/bin/env python
    # -*- coding: utf-8 -*-
    # Created by xuehz on 2017/4/9
    import numpy as np
    import matplotlib as mpl
    import matplotlib.pyplot as plt
    from scipy.stats import norm, poisson
    import time
    from scipy.optimize import leastsq
    from scipy import stats
    import scipy.optimize as opt
    import matplotlib.pyplot as plt
    from scipy.stats import norm, poisson
    from scipy.interpolate import BarycentricInterpolator
    from scipy.interpolate import CubicSpline
    from scipy import stats
    import math
    
    mpl.rcParams['font.sans-serif'] = [u'SimHei']  #FangSong/黑体 FangSong/KaiTi
    mpl.rcParams['axes.unicode_minus'] = False
    
    def f(x):
        y = np.ones_like(x)
        i = x > 0
        y[i] = np.power(x[i], x[i])
        i = x < 0
        y[i] = np.power(-x[i], -x[i])
        return y
    
    def residual(t, x, y):
        return y - (t[0] * x ** 2 + t[1] * x + t[2])
    
    
    def residual2(t, x, y):
        print t[0], t[1]
        return y - (t[0]*np.sin(t[1]*x) + t[2])
    
    if __name__ == '__main__':
    
        #绘制正态分布概率密度函数
        # mu = 0
        # sigma = 1
        # x = np.linspace(mu - 3 * sigma, mu + 3 * sigma, 51)
        # y = np.exp(-(x - mu) ** 2 / (2 * sigma ** 2)) / (math.sqrt(2 * math.pi) * sigma)
        # print x.shape
        # print 'x = 
    ', x
        # print y.shape
        # print 'y = 
    ', y
        # #plt.plot(x, y, 'ro-', linewidth=2)
        # plt.figure(facecolor='w')
        # plt.plot(x, y, 'r-', x, y, 'go', linewidth=2, markersize=8)
        # plt.xlabel('X', fontsize=15)
        # plt.ylabel('Y', fontsize=15)
        # plt.title(u'高斯分布函数', fontsize=18)
        # plt.grid(True)
        # plt.show()
    
        #损失函数:Logistic损失(-1,1)/SVM Hinge损失/ 0/1损失
        # x = np.array(np.linspace(start=-2, stop=3, num=1001, dtype=np.float))
        # y_logit = np.log(1 + np.exp(-x)) / math.log(2)
        # y_boost = np.exp(-x)
        # y_01 = x < 0
        # y_hinge = 1.0 - x
        # y_hinge[y_hinge < 0] = 0
        # plt.plot(x, y_logit, 'r-', label='Logistic Loss', linewidth=2)
        # plt.plot(x, y_01, 'g-', label='0/1 Loss', linewidth=2)
        # plt.plot(x, y_hinge, 'b-', label='Hinge Loss', linewidth=2)
        # plt.plot(x, y_boost, 'm--', label='Adaboost Loss', linewidth=2)
        # plt.grid()
        # plt.legend(loc='upper right')
        # # plt.savefig('1.png')
        # plt.show()
    
        #x^x
        # x = np.linspace(-1.3, 1.3, 101)
        # y = f(x)
        # plt.plot(x, y, 'g-', label='x^x', linewidth=2)
        # plt.grid()
        # plt.legend(loc='upper left')
        # plt.show()
    
        # #  胸型线
        # x = np.arange(1, 0, -0.001)
        # y = (-3 * x * np.log(x) + np.exp(-(40 * (x - 1 / np.e)) ** 4) / 25) / 2
        # plt.figure(figsize=(5,7), facecolor='w')
        # plt.plot(y, x, 'r-', linewidth=2)
        # plt.grid(True)
        # plt.title(u'胸型线', fontsize=20)
        # # plt.savefig('breast.png')
        # plt.show()
        #
        #
        # # 心形线
        # t = np.linspace(0, 2*np.pi, 100)
        # x = 16 * np.sin(t) ** 3
        # y = 13 * np.cos(t) - 5 * np.cos(2*t) - 2 * np.cos(3*t) - np.cos(4*t)
        # plt.plot(x, y, 'r-', linewidth=2)
        # plt.grid(True)
        # plt.show()
        #
        # #  渐开线
        # t = np.linspace(0, 50, num=1000)
        # x = t*np.sin(t) + np.cos(t)
        # y = np.sin(t) - t*np.cos(t)
        # plt.plot(x, y, 'r-', linewidth=2)
        # plt.grid()
        # plt.show()
        #
        # # Bar
        # x = np.arange(0, 10, 0.1)
        # y = np.sin(x)
        # plt.bar(x, y, width=0.04, linewidth=0.2)
        # plt.plot(x, y, 'r--', linewidth=2)
        # plt.title(u'Sin曲线')
        # plt.xticks(rotation=-60)
        # plt.xlabel('X')
        # plt.ylabel('Y')
        # plt.grid()
        # plt.show()
    
    
        # # # 6. 概率分布
        # # 6.1 均匀分布
        # x = np.random.rand(10000)
        # t = np.arange(len(x))
        # #plt.hist(x, 30, color='m', alpha=0.5, label=u'均匀分布')
        # plt.plot(t, x, 'r-', label=u'均匀分布')
        # plt.legend(loc='upper left')
        # plt.grid()
        # plt.show()
    
        # # 6.2 验证中心极限定理
        # t = 1000
        # a = np.zeros(10000)
        # for i in range(t):
        #     a += np.random.uniform(-5, 5, 10000)
        # a /= t
        # plt.hist(a, bins=30, color='g', alpha=0.5, normed=True, label=u'均匀分布叠加')
        # plt.legend(loc='upper left')
        # plt.grid()
        # plt.show()
        #
        # #6.21 其他分布的中心极限定理
        # lamda = 10
        # p = stats.poisson(lamda)
        # y = p.rvs(size=1000)
        # mx = 30
        # r = (0, mx)
        # bins = r[1] - r[0]
        # plt.figure(figsize=(10, 8), facecolor='w')
        # plt.subplot(121)
        # plt.hist(y, bins=bins, range=r, color='g', alpha=0.8, normed=True)
        # t = np.arange(0, mx+1)
        # plt.plot(t, p.pmf(t), 'ro-', lw=2)
        # plt.grid(True)
        # N = 1000
        # M = 10000
        # plt.subplot(122)
        # a = np.zeros(M, dtype=np.float)
        # p = stats.poisson(lamda)
        # for i in np.arange(N):
        #     y = p.rvs(size=M)
        #     a += y
        # a /= N
        # plt.hist(a, bins=20, color='g', alpha=0.8, normed=True)
        # plt.grid(b=True)
        # plt.show()
    
        # # 6.3 Poisson分布
        # x = np.random.poisson(lam=5, size=10000)
        # print x
        # pillar = 15
        # a = plt.hist(x, bins=pillar, normed=True, range=[0, pillar], color='g', alpha=0.5)
        # plt.grid()
        # plt.show()
        # print a
        # print a[0].sum()
        #
        # # 6.4 直方图的使用
        # mu = 2
        # sigma = 3
        # data = mu + sigma * np.random.randn(1000)
        # h = plt.hist(data, 30, normed=1, color='#a0a0ff')
        # x = h[1]
        # y = norm.pdf(x, loc=mu, scale=sigma)
        # plt.plot(x, y, 'r--', x, y, 'ro', linewidth=2, markersize=4)
        # plt.grid()
        # plt.show()
    
        # # 6.5 插值
        # rv = poisson(5)
        # x1 = a[1]
        # y1 = rv.pmf(x1)
        # itp = BarycentricInterpolator(x1, y1)  # 重心插值
        # x2 = np.linspace(x.min(), x.max(), 50)
        # y2 = itp(x2)
        # cs = scipy.interpolate.CubicSpline(x1, y1)       # 三次样条插值
        # plt.plot(x2, cs(x2), 'm--', linewidth=5, label='CubicSpine')           # 三次样条插值
        # plt.plot(x2, y2, 'g-', linewidth=3, label='BarycentricInterpolator')   # 重心插值
        # plt.plot(x1, y1, 'r-', linewidth=1, label='Actural Value')             # 原始值
        # plt.legend(loc='upper right')
        # plt.grid()
        # plt.show()
    
        # 8.1 scipy
        #线性回归例1
        x = np.linspace(-2, 2, 50)
        A, B, C = 2, 3, -1
        y = (A * x ** 2 + B * x + C) + np.random.rand(len(x))*0.75
    
        t = leastsq(residual, [0, 0, 0], args=(x, y))
        theta = t[0]
        print '真实值:', A, B, C
        print '预测值:', theta
        y_hat = theta[0] * x ** 2 + theta[1] * x + theta[2]
        plt.plot(x, y, 'r-', linewidth=2, label=u'Actual')
        plt.plot(x, y_hat, 'g-', linewidth=2, label=u'Predict')
        plt.legend(loc='upper left')
        plt.grid()
        plt.show()
    
    
        # 线性回归例2
        x = np.linspace(0, 5, 100)
        a = 5
        w = 1.5
        phi = -2
        y = a * np.sin(w*x) + phi + np.random.rand(len(x))*0.5
    
        t = leastsq(residual2, [3, 5, 1], args=(x, y))
        theta = t[0]
        print '真实值:', a, w, phi
        print '预测值:', theta
        y_hat = theta[0] * np.sin(theta[1] * x) + theta[2]
        plt.plot(x, y, 'r-', linewidth=2, label='Actual')
        plt.plot(x, y_hat, 'g-', linewidth=2, label='Predict')
        plt.legend(loc='lower left')
        plt.grid()
        plt.show()
    
        # marker    description
        # ”.”   point
        # ”,”   pixel
        # “o”   circle
        # “v”   triangle_down
        # “^”   triangle_up
        # “<”   triangle_left
        # “>”   triangle_right
        # “1”   tri_down
        # “2”   tri_up
        # “3”   tri_left
        # “4”   tri_right
        # “8”   octagon
        # “s”   square
        # “p”   pentagon
        # “*”   star
        # “h”   hexagon1
        # “H”   hexagon2
        # “+”   plus
        # “x”   x
        # “D”   diamond
        # “d”   thin_diamond
        # “|”   vline
        # “_”   hline
        # TICKLEFT  tickleft
        # TICKRIGHT tickright
        # TICKUP    tickup
        # TICKDOWN  tickdown
        # CARETLEFT caretleft
        # CARETRIGHT    caretright
        # CARETUP   caretup
        # CARETDOWN caretdown
    

  • 相关阅读:
    C#设计一个简单的计算器,实现两个数的加,减,乘,除,求幂等计算,运行效果如下图所示:
    如何用C#中的窗体设计一款只含有加减乘除,求平方的简易版计算器?
    番外篇科普为什么1024是程序员日?2020年10月24日,程序员为啥都不放假?
    VS2019基础,C#编辑窗体时,工具箱如何调用,工具箱挡住窗体怎么办,如何改窗体名字
    C++用函数重载实现两个整数和三个浮点数的排序,按照从小到大的顺序将排序结果输出
    C++用引用形参实现两个变量的值互换
    C++用带有默认参数的函数实现,求2个或3个正整数中的最大数
    linux服务器磁盘速度测试
    CSS HACK收集
    分享一个web页面背景全屏的jquery插件Fullscreen Background
  • 原文地址:https://www.cnblogs.com/xuehaozhe/p/python-ji-chu2-hua-tu.html
Copyright © 2011-2022 走看看