zoukankan      html  css  js  c++  java
  • 入门-资料参考

    仅作学习使用

    先看一些资料。

    推荐算法综述,https://blog.csdn.net/a378812/article/details/83033713 

    参考文献:

      [1]  Su X, Khoshgoftaar T M. Asurvey of collaborative filtering techniques[M]. Hindawi Publishing Corp. 2009.

      [2]  J. Bobadilla, F. Ortega, A.Hernando, A. Gutiérrez, Recommender systems survey, Knowledge-Based Systems, 46(2013) 109-132.

     [3]   P. Resnick, H.R. Varian, Recommender systems, Communications of theACM, 40 (1997) 56-58.

     [4]   M. Pazzani, D. Billsus, Content-based recommendation systems, in: P.Brusilovsky, A. Kobsa, W. Nejdl (Eds.) The Adaptive Web, Springer BerlinHeidelberg2007, pp. 325-341.

     [5]   Salton G. Automatic text processing[M]. Addison-Wesley LongmanPublishing Co. Inc. 1989.

     [6]   Deerwester S. Indexing by latent semantic analysis[J]. Journal ofthe Association for Information Science & Technology, 1990, 41(6):391-407.

     [7]   Hofmann T. Unsupervised Learning by Probabilistic Latent SemanticAnalysis[J]. Machine Learning, 2001, 42(1-2):177-196.

     [8]   M. Deshpande, G. Karypis, Item-based top-N recommendationalgorithms, ACM Transactions on Information Systems (TOIS), 22 (2004) 143-177

     [9]   P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, J. Riedl,GroupLens: an open architecture for collaborative filtering of netnews,  Proceedings of the 1994 ACM Conference onComputer Supported Cooperative Work, ACM, Chapel Hill, North Carolina, USA,1994, pp. 175-186.

    [10]  Lu J, Wu D, Mao M, et al.Recommender system application developments[J]. Decision Support Systems, 2015,74(C):12-32.

    [11]  M. Nilashi, O.b. Ibrahim, N.Ithnin, Multi-criteria collaborative filtering with high accuracy using higherorder singular value decomposition and Neuro-Fuzzy system, Knowledge-BasedSystems, 60 (2014) 82-101.

    [12]  G.-R. Xue, C. Lin, Q. Yang, W.Xi, H.-J. Zeng, Y. Yu, Z. Chen, Scalable collaborative filtering usingcluster-based smoothing,  Proceedings ofthe 28th Annual International ACM SIGIR Conference on Research and Developmentin Information Retrieval, ACM, Salvador, Brazil, 2005, pp. 114-121.

    [13]  S.K. Shinde, U. Kulkarni,Hybrid personalized recommender system using centering-bunching basedclustering algorithm, Expert Systems with Applications, 39 (2012) 1381-1387.

    [14]  M.A. Ghazanfar, A.Prügel-Bennett, Leveraging clustering approaches to solve the gray-sheep usersproblem in recommender systems, Expert Systems with Applications, 41 (2014)3261-3275.

    [15]  G.Shani,D.Heckerman,and R.I.Brafman,“AnMDP-based recommender system,” Journal of Machine Learning Research, vol. 6,pp. 1265–1295, 2005.

    [16]  R. A. Howard, DynamicProgramming and Markov Processes, MIT Press, Cambridge, Mass, USA, 1960.

    [17]  R. S. Sutton and A. G. Barto,Reinforcement Learning: An Introduction, MIT Press, Cambridge, Mass, USA, 1998.

    [18]  Felfernig A, Burke R.Constraint-based recommender systems: technologies and research issues[M].2008.

    [19]  Tsang E P K. Foundations ofconstraint satisfaction[M]. DBLP, 1993.

    [20]  B. Smyth, Case-basedrecommendation, in: P. Brusilovsky, A. Kobsa, W. Nejdl (Eds.) The Adaptive Web,Springer Berlin Heidelberg2007, pp. 342-376.

    [21]  Burke, R., Hammond, K., andYoung, B. 1997. The FindMe Approach to Assisted Browsing. IEEE Expert, 12(4),pages 32-40.

    [22]  Huang Z, Zeng D D, Chen H.Analyzing Consumer-Product Graphs: Empirical Findings and Applications inRecommender Systems[J]. Management Science, 2007, 53(7):1146-1164.

    [23]  Zhou T, Ren J, Medo M, et al.Bipartite network projection and personal recommendation.[J]. Physical Review EStatistical Nonlinear & Soft Matter Physics, 2007, 76(2):046115.

    [24]  Zhang S, Yao L, Sun A. DeepLearning based Recommender System: A Survey and New Perspectives[J]. 2017.

    [25]  Paul Covington,Jay Adams,and EmreSargin .2016. Deep neural networks for youtube recommendations.In Proceedingsof the 10th ACM Conference on Recommender Systems.ACM,191–198.

    [26]  Cheng H T, Koc L, Harmsen J, etal. Wide & Deep Learning for Recommender Systems[J]. 2016:7-10.

    [27]  孟婷婷. 基于社交网络的推荐算法应用研究[D]. 重庆大学, 2015.

  • 相关阅读:
    二、MyBatis教程之三—多参数的获取方式
    js 编写一道程序题输入长和宽之后点击按钮可弹出长方形面积。
    js 收银元小程序
    文字特效text-shadow HTML+css
    跳动的心 有阴影 跳动
    table框的切换
    jquery选择器是什么?
    随机数Math.random()
    双色球随机数字
    Angularjs 算法//姓名//自定义标签
  • 原文地址:https://www.cnblogs.com/xuehuiping/p/11308407.html
Copyright © 2011-2022 走看看