zoukankan      html  css  js  c++  java
  • pytorch实现VAE

    一、VAE的具体结构

    二、VAE的pytorch实现

    1加载并规范化MNIST

     import相关类:

    from __future__ import print_function
    import argparse
    import torch
    import torch.utils.data
    import torch.nn as nn
    import torch.optim as optim
    from torch.autograd import Variable
    from torchvision import datasets, transforms

     设置参数:

    parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
    parser.add_argument('--batch-size', type=int, default=128, metavar='N',
                        help='input batch size for training (default: 128)')
    parser.add_argument('--epochs', type=int, default=10, metavar='N',
                        help='number of epochs to train (default: 10)')
    parser.add_argument('--no-cuda', action='store_true', default=False,
                        help='enables CUDA training')
    parser.add_argument('--seed', type=int, default=1, metavar='S',
                        help='random seed (default: 1)')
    parser.add_argument('--log-interval', type=int, default=10, metavar='N',
                        help='how many batches to wait before logging training status')
    args = parser.parse_args()
    args.cuda = not args.no_cuda and torch.cuda.is_available()
    print(args)
    
    #Sets the seed for generating random numbers. And returns a torch._C.Generator object.
    torch.manual_seed(args.seed)
    if args.cuda:
        torch.cuda.manual_seed(args.seed)    

    输出结果:

    Namespace(batch_size=128, cuda=True, epochs=10, log_interval=10, no_cuda=False, seed=1)

    下载数据集到./data/目录下:

    kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {}
    trainset = datasets.MNIST('../data', train=True, download=True,transform=transforms.ToTensor())
    train_loader = torch.utils.data.DataLoader(
        trainset,
        batch_size=args.batch_size, shuffle=True, **kwargs)
    testset= datasets.MNIST('../data', train=False, transform=transforms.ToTensor())
    test_loader = torch.utils.data.DataLoader(
        testset,
        batch_size=args.batch_size, shuffle=True, **kwargs)
    image, label = trainset[0]  
    print(len(trainset))
    print(image.size())
    image, label = testset[0]  
    print(len(testset))
    print(image.size())

    输出结果:

    60000
    torch.Size([1, 28, 28])
    10000
    torch.Size([1, 28, 28])

    2定义VAE

    首先我们介绍x.view方法:

    x = torch.randn(4, 4)y = x.view(16)z = x.view(-1, 16)  # the size -1 is inferred from other dimensions
    print(x)
    print(y)
    print(z)

    输出结果:

     1.6154  1.1792  0.6450  1.2078
    -0.4741  1.2145  0.8381  2.3532
     0.2070 -0.9054  0.9262  0.6758
     1.2613  0.5196 -1.7125 -0.0519
    [torch.FloatTensor of size 4x4]
     1.6154
     1.1792
     0.6450
     1.2078
    -0.4741
     1.2145
     0.8381
     2.3532
     0.2070
    -0.9054
     0.9262
     0.6758
     1.2613
     0.5196
    -1.7125
    -0.0519
    [torch.FloatTensor of size 16]
    Columns 0 to 9 
     1.6154  1.1792  0.6450  1.2078 -0.4741  1.2145  0.8381  2.3532  0.2070 -0.9054
    
    Columns 10 to 15 
     0.9262  0.6758  1.2613  0.5196 -1.7125 -0.0519
    [torch.FloatTensor of size 1x16]

    然后建立VAE模型

    class VAE(nn.Module):
        def __init__(self):
            super(VAE, self).__init__()
    
            self.fc1 = nn.Linear(784, 400)
            self.fc21 = nn.Linear(400, 20)
            self.fc22 = nn.Linear(400, 20)
            self.fc3 = nn.Linear(20, 400)
            self.fc4 = nn.Linear(400, 784)
    
            self.relu = nn.ReLU()
            self.sigmoid = nn.Sigmoid()
    
        def encode(self, x):
            h1 = self.relu(self.fc1(x))
            return self.fc21(h1), self.fc22(h1)
    
        def reparametrize(self, mu, logvar):
            std = logvar.mul(0.5).exp_()
            eps = Variable(std.data.new(std.size()).normal_())
            return eps.mul(std).add_(mu)
    
        def decode(self, z):
            h3 = self.relu(self.fc3(z))
            return self.sigmoid(self.fc4(h3))
    
        def forward(self, x):
            mu, logvar = self.encode(x.view(-1, 784))
            z = self.reparametrize(mu, logvar)
            return self.decode(z), mu, logvar
    
    model = VAE()
    if args.cuda:
        model.cuda()

    3.定义一个损失函数

    
    
    reconstruction_function = nn.BCELoss()
    reconstruction_function.size_average = False
    
    def loss_function(recon_x, x, mu, logvar):
        BCE = reconstruction_function(recon_x, x.view(-1, 784))
    
        # see Appendix B from VAE paper:
        # Kingma and Welling. Auto-Encoding Variational Bayes. ICLR, 2014
        # https://arxiv.org/abs/1312.6114
        # 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2)
        KLD_element = mu.pow(2).add_(logvar.exp()).mul_(-1).add_(1).add_(logvar)
        KLD = torch.sum(KLD_element).mul_(-0.5)
    
        return BCE + KLD
    
    
    optimizer = optim.Adam(model.parameters(), lr=1e-3)

    4.在训练数据上训练神经网络

    我们只需要对数据迭代器进行循环,并将输入反馈到网络并进行优化。

    for epoch in range(1, args.epochs + 1):
        train(epoch)
        test(epoch)

    其中 

    def train(epoch):
        model.train()
        train_loss = 0
        for batch_idx, (data, _) in enumerate(train_loader):
            data = Variable(data)
            if args.cuda:
                data = data.cuda()
            optimizer.zero_grad()
            recon_batch, mu, logvar = model(data)
            loss = loss_function(recon_batch, data, mu, logvar)
            loss.backward()
            train_loss += loss.data[0]
            optimizer.step()
            if batch_idx % args.log_interval == 0:
                print('Train Epoch: {} [{}/{} ({:.0f}%)]	Loss: {:.6f}'.format(
                    epoch, batch_idx * len(data), len(train_loader.dataset),
                    100. * batch_idx / len(train_loader),
                    loss.data[0] / len(data)))
                
    
        print('====> Epoch: {} Average loss: {:.4f}'.format(
              epoch, train_loss / len(train_loader.dataset)))
    
    
    def test(epoch):
        model.eval()
        test_loss = 0
        for data, _ in test_loader:
            if args.cuda:
                data = data.cuda()
            data = Variable(data, volatile=True)
            recon_batch, mu, logvar = model(data)
            test_loss += loss_function(recon_batch, data, mu, logvar).data[0]
    
        test_loss /= len(test_loader.dataset)
        print('====> Test set loss: {:.4f}'.format(test_loss))

     Tips:

    1.直接运行pytorch examples里的代码发现library not initialized at /pytorch/torch/lib/THC/THCGeneral.c错误

    解决方案:sudo rm -r ~/.nv

    2.该源码实现的论文为https://arxiv.org/pdf/1312.6114.pdf

  • 相关阅读:
    iOS开发——C篇&数组与指针
    iOS开发——C篇&动态内存分配
    助教工作总结
    助教周报(第二轮)— 王茹瑶,林泽龙,范青青
    助教周报(第一轮)---王茹瑶
    UML总结--熊熊的奇幻旅程
    今天是一个睡前的小故事(是谁要给的大饼)
    我与oracle的爱恨情仇(第一章)
    第三次结对作业(王茹瑶+柯智腾)
    第二次结对作业(王茹瑶+柯智腾)
  • 原文地址:https://www.cnblogs.com/xueqiuqiu/p/7605796.html
Copyright © 2011-2022 走看看