zoukankan      html  css  js  c++  java
  • 学数答题160911-三次函数

    题160911(14分)已知三次函数$fleft( x ight)$有三个零点${{x}_{1}},{{x}_{2}},{{x}_{3}}$,且在点$left( {{x}_{i}},fleft( {{x}_{i}} ight) ight)$处切线的斜率为${{k}_{i}}$($i=1,2,3$).

    证明:$frac{1}{{{k}_{1}}}+frac{1}{{{k}_{2}}}+frac{1}{{{k}_{3}}}=0$.


    :由题意不妨设$fleft( x ight)=aleft( x-{{x}_{1}} ight)left( x-{{x}_{2}} ight)left( x-{{x}_{3}} ight)$($a e 0$),则

    $f'left( x ight)=aleft[ left( x-{{x}_{2}} ight)left( x-{{x}_{3}} ight)+left( x-{{x}_{1}} ight)left( x-{{x}_{3}} ight)+left( x-{{x}_{1}} ight)left( x-{{x}_{2}} ight) ight]$

    故$dfrac{1}{{{k}_{1}}}+dfrac{1}{{{k}_{2}}}+dfrac{1}{{{k}_{3}}}$

    $=dfrac{1}{f'left( {{x}_{1}} ight)}+dfrac{1}{f'left( {{x}_{2}} ight)}+dfrac{1}{f'left( {{x}_{3}} ight)}$

    $=dfrac{1}{aleft( {{x}_{1}}-{{x}_{2}} ight)left( {{x}_{1}}-{{x}_{3}} ight)}+dfrac{1}{aleft( {{x}_{2}}-{{x}_{1}} ight)left( {{x}_{2}}-{{x}_{3}} ight)}+dfrac{1}{aleft( {{x}_{3}}-{{x}_{1}} ight)left( {{x}_{3}}-{{x}_{2}} ight)}$

    $=dfrac{left( {{x}_{2}}-{{x}_{3}} ight)+left( {{x}_{3}}-{{x}_{1}} ight)+left( {{x}_{1}}-{{x}_{2}} ight)}{aleft( {{x}_{1}}-{{x}_{2}} ight)left( {{x}_{1}}-{{x}_{3}} ight)left( {{x}_{2}}-{{x}_{3}} ight)}$

    $=0$

  • 相关阅读:
    Red hat 5挂载U盘
    Win7+VMware Workstation环境下的CentOS-Linux网络连接设置
    rand()随机数的产生
    phpmyadmin数据库导入出错
    dede忽略错误
    wamp
    网页地图map
    Redefining already defined constructor
    SCREAM:Error suppression ignored for
    Python+selenium之疑难点解决之去除readonly的限制
  • 原文地址:https://www.cnblogs.com/xueshutuan/p/5862917.html
Copyright © 2011-2022 走看看