zoukankan      html  css  js  c++  java
  • 学数答题160912-导数极值点偏移

    题160912(14分)若函数$fleft( x ight)={{e}^{x}}-aln x-a$($a>e$)有两个零点${{x}_{1}},{{x}_{2}}$,求证:${{x}_{1}}+{{x}_{2}}>2$.


    证明:函数$y=fleft( x ight)$的零点,即方程$dfrac{1}{a}={{ ext{e}}^{-x}}left( ln x+1 ight)$的根,

    设$gleft( x ight)={{ ext{e}}^{-x}}left( ln x+1 ight)$,因此${{x}_{1}},{{x}_{2}}$是方程$gleft( x ight)=dfrac{1}{a}$的两个实根.

    $gleft( x ight)$的导数$g'left( x ight)={{e}^{-x}}left( dfrac{1}{x}-ln x-1 ight)$,

    当$xin left( 0,1 ight)$时,$g'left( x ight)>0$,$gleft( x ight)$单增;当$xin left( 1,+infty  ight)$上时,$g'left( x ight)<0$,$gleft( x ight)$单减,

    $x=1$是$gleft( x ight)$的极大值点.

    故方程$gleft( x ight)=dfrac{1}{a}$的两个实根一个比$1$大,一个比$1$小,不妨设${{x}_{1}}<1<{{x}_{2}}$.

    构造函数$hleft( x ight)=-dfrac{1}{ ext{e}}{{left( x-1 ight)}^{2}}+dfrac{1}{ ext{e}}$,令$Fleft( x ight)=gleft( x ight)-hleft( x ight)$,

    则${F}'left( x ight)={g}'left( x ight)-{h}'left( x ight)={{ ext{e}}^{-x}}left( dfrac{1}{x}-ln x-1 ight)+dfrac{2}{ ext{e}}left( x-1 ight)$,

    于是${{F}'}'left( x ight)={{ ext{e}}^{-x}}left( -dfrac{1}{{{x}^{2}}}-dfrac{2}{x}+ln x+1 ight)+dfrac{2}{ ext{e}}$,

    因为$y=-dfrac{1}{{{x}^{2}}}-dfrac{2}{x}+ln x+1$在$left( 0,+infty  ight)$上单调递增,

    所以当$xin left( 0,1 ight)$时,${{F}'}'left( x ight)<-2{{ ext{e}}^{-x}}+dfrac{2}{ ext{e}}<-2{{ ext{e}}^{-1}}+dfrac{2}{ ext{e}}=0.$

    当$xin left( 1,+infty  ight)$时,$F''left( x ight)>-2{{ ext{e}}^{-x}}+dfrac{2}{ ext{e}}>-2{{ ext{e}}^{-1}}+dfrac{2}{ ext{e}}=0,$

    所以${F}'left( x ight)$在$left(0,1 ight)$上单调递减,在$left(1,+infty ight)$上单调递增,且${F}'left( 1 ight)=0$,

    所以${F}'left( x ight)0$,$xin left( 0,+infty  ight)$.

    所以$Fleft(x ight)$单调递增,又$Fleft(1 ight)=0$,所以有$gleft(x ight)-hleft(x ight)egin{cases}>0,x>1,\=0,x=1,\<0,0<x<1.end{cases}$

    设$y=dfrac{1}{a}$与二次函数$hleft(x ight)$交于$x_3,x_4$两点,不妨设$x_3<1<x_4$.因此,有

    $dfrac{1}{a}=hleft( {{x}_{3}} ight)=gleft( {{x}_{1}} ight)<hleft( {{x}_{1}} ight)$,$dfrac{1}{a}=hleft( {{x}_{4}} ight)=gleft( {{x}_{2}} ight)>hleft( {{x}_{2}} ight)$,

    如图所示:

    所以$x_3<x_1<1<x_4<x_2,$

    因为$x_3+x_4=2$,所以${{x}_{1}}+{{x}_{2}}>2$,得证.

    注:本解析是通过构造二次函数$hleft(x ight)$,比较$gleft(x ight)$与$hleft(x ight)$在极值点两侧的大小关系,结合函数的单调性,得到$x_1,x_2,x_3,x_4$的大小关系,从而由$hleft(x ight)$与$y=dfrac{1}{a}$交点的横坐标之和为$2$,得到$x_1+x_2$与$2$的大小关系.难点是如何构造这样的二次函数,$gleft(x ight)$的极值点为$1$,则此二次函数$hleft(x ight)$需要满足$hleft( 1 ight)=gleft( 1 ight)$,${h}'left( 1 ight)={g}'left( 1 ight)$,${{h}'}'left( 1 ight)={{g}'}'left( 1 ight)$,

    所以$hleft( x ight)=dfrac{{g}'left( 1 ight)}{2}{{left( x-1 ight)}^{2}}+gleft( 1 ight).$

     

  • 相关阅读:
    javascript--Date
    PL/SQL的命令行窗口中执行脚本
    关于资产新增接口问题描述
    ORA-00600: internal error code, arguments: [kqludp2], [0x08D226918], [0], [], [], [], [], [], [], [], [], []
    Oracle 表空间扩容
    EBS 创建会计科目 小结
    EBS AP 创建会计科目失败
    EBS GL 日记账行“账户说明”段说明显示不全
    EBS 修改系统名称
    EBS 修改系统颜色
  • 原文地址:https://www.cnblogs.com/xueshutuan/p/5865594.html
Copyright © 2011-2022 走看看