zoukankan      html  css  js  c++  java
  • 学数答题160914

    160914(15分)现有一个向右方和下方无限延伸的方格数表,其中第$1$行前两数依次为$4$、$7$,第$2$行前两数依次为$7$、$12$,且该数表的任意一行及任意一列的各数依次成等差数列.

    (1)求方格表中位于第$20$行第$16$列的数;

    (2)证明:正整数$s$出现在数表中,当且仅当$2s+1$是合数.


    题目来源:2016年高联全国C卷

    :由题知,设方格表中位于第$m$行第$n$列的数为${{a}_{mn}}$,

    第一列的首项为$4$,公差为$3$,故${{a}_{m1}}=3m+1$;

    第二列的首项为$7$,公差为$5$,故${{a}_{m2}}=5m+2$;

    故第$m$行的公差为${{a}_{m2}}-{{a}_{m1}}=2m+1$,

    因此${{a}_{mn}}={{a}_{m1}}+left( n-1 ight)left( 2m+1 ight)$$=left( 3m+1 ight)+left( n-1 ight)left( 2m+1 ight)$,

    即${{a}_{mn}}=2mn+m+n$.

    (1)方格表中位于第$20$行第$16$列的数为

    $2 imes 20 imes 16+20+16=676$;

    (2)若$s=2mn+m+n$,则

    $2s+1=4mn+2m+2n+1=left( 2m+1 ight)left( 2n+1 ight)$,

    因为$m,nin {{N}^{*}}$,所以$2s+1$必为合数;

    反之,若$2s+1$为合数,则存在正整数$p,q>1$,有$2s+1=pq$,

    因为$2s+1$为奇数,所以$p,q$均为大于$1$的奇数,

    不妨设$p=2u+1$,$q=2v+1$,其中$u,vin {{N}^{*}}$,

    则$2s+1=left( 2u+1 ight)left( 2v+1 ight)$$Rightarrow $$s=2uv+u+v$,

    故正整数$s$出现在数表中.

    综上,命题成立.

  • 相关阅读:
    工作杠杆
    AngularJS 自定义指令directive 介绍
    CentOS卸载OpenJDK并安装Sun JDK
    jQuery Datatable 表格插件
    ZTree 使用范例
    jQuery UI 实例 – 切换(Toggle)
    curl 抓取页面信息
    报警平台
    PHP imagechar() 图形验证码 字体太小问题
    Discuz!在线中文分词服务
  • 原文地址:https://www.cnblogs.com/xueshutuan/p/5873873.html
Copyright © 2011-2022 走看看