题160913(14分)数列$left{ {{a}_{n}} ight}$满足:${{a}_{1}}=1$,${{a}_{n+1}}={{a}_{n}}+2n+1$,求证:$sumlimits_{i=1}^{n}{dfrac{1}{{{a}_{i}}}}<dfrac{5}{3}$.
题目来源:2013年中国科学技术大学入学考试
证明:由${{a}_{n+1}}={{a}_{n}}+2n+1$,得${{a}_{n+1}}-{{a}_{n}}=2n+1$,
累加得${{a}_{n}}=left( {{a}_{n}}-{{a}_{n-1}} ight)+left( {{a}_{n-1}}-{{a}_{n-2}} ight)+cdots +left( {{a}_{2}}-{{a}_{1}} ight)+{{a}_{1}}$,
即${{a}_{n}}=left[ 2 imes left( n-1 ight)+1 ight]+left[ 2 imes left( n-2 ight)+1 ight]+cdots +left[ 2 imes 1+1 ight]+1$,
得${{a}_{n}}=1+2 imes dfrac{nleft( n-1 ight)}{2}+left( n-1 ight)={{n}^{2}}$,
因此,$sumlimits_{i=1}^{n}{dfrac{1}{{{a}_{i}}}=}sumlimits_{i=1}^{n}{dfrac{1}{{{i}^{2}}}}$
$<1+dfrac{1}{4}+dfrac{1}{9}+dfrac{1}{16}+dfrac{1}{25}+left[ dfrac{1}{5 imes 6}+dfrac{1}{6 imes 7}+cdots +dfrac{1}{left( n-1 ight)n} ight]$
$=1+dfrac{1}{4}+dfrac{1}{9}+dfrac{1}{16}+dfrac{1}{25}+dfrac{1}{5}-dfrac{1}{n}$
$=1+dfrac{2389}{3600}-dfrac{1}{n}$$<dfrac{5}{3}$.