zoukankan      html  css  js  c++  java
  • Azure机器学习入门(一)

    我们开始深入学习Azure机器学习的基本原理并为您开启伟大的数据科学之门。Azure 机器学习的一个重要特征就是在构建预测分析方案时,它能够方便地将开发模式集成为可重复的工作流模式。这就使得Azure机器学习对一个新手来说也是那么平易近人,而且能够像一个经验丰富的数据科学家一样快速高效的工作

    Azure机器学习核心概念

    为了充分体会与理解Azure机器学习的内部运作机制,我们需要掌握一些预测分析学科与方法论的基本概念。扎实地掌握和理解了这些基本的理论知识之后,我们这些数据科学家便可以对数据、预期成果以及怎样才是正确的方法过程做出更好的决策,进而获得成功。

    机器学习的主要内容之一便是它能够快速的建立机器学习实例,评价模型的准确性然后"快速失败",以最短的循环周期建立一个有效的预测模型。最后,预测分析的首要目标是使用我们建立的模型始终可以比使用纯碎的随机模型得到更好的预测分析结果。

    我们知道,在做重要的商业决定的时候,最成功的企业家们总是会热衷于通过改善赔率的方式来获得优势。这也正是预测分析和Azure机器学习真正的价值所在。无论是在商业界还是在现实生活中,任何时候只要你通过提高成功几率的方式而不是纯粹依靠运气,你总能占有明显的优势。

    一个简单的实际应用的例子就是为市场营销活动的有效性提供反馈情况预测分析。通过对一些相关因素的分析,例如用户提供的响应信息、对客户数据的分割处理、价格和折扣影响因素、季节特性、这回媒体影响等,相应的模式很快就会显现出来。这些潜在的市场模式能够为市场中的一些因果现象提供线索,从而有助于我们提出做出更好更明智的营销策略。这也是现如今大多数有针对性的市场营销活动的基本前提。

    现在,让我们把目光转向我们的目标客户群—人类,一个制造习惯的群体。在处理人类行为的时候,其过去的行为总是未来行为强有力的指标。预测分析与机器学习可以帮助我们利用这些关键的规则使人们过去的行为更清晰、更容易追踪,从而帮助我们做出的营销策略在未来更可能获得更高的市场利率。

    若要想更好的积累Azure机器学习的经验知识,我们需要掌握几个基本的数据科学的原理、算法和理论来储备一个良好的机器学习背景并理解他们是如何工作。现如今永无休止的爆炸式增长的数据加之"大数据"技术的快速进展无疑使得数据科学学科越发的火热。这个新兴产业的核心是在现有所有数据基础上通过将数学、统计学、分析技术混合应用来产生价值。因此,本书中我们只涉及在学习Azure机器学习过程中需要用到的一些基础知识,关于机器学习理论有很多先进的图书和各式的课程可以参阅。我们把这个令人兴奋的新学科的深层理论知识的探索任务留给各位数据科学家们。

    先进的Azure机器学习工作流

    创建Azure 机器学习解决方案基本过程是由可重复的工作流模式的步骤组成的,旨在帮助我们随时建立新的预测分析方案。图2-1总结了此过程中的基本步骤。

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    • 数据。一切都是围绕数据展开。利用数据模块我们获取、编译、分析测试数据集和训练数据集,继而用其创建Azure机器学习预测模型。
    • 创建模型。基于对数据集的推断就可以利用各种机器学习算法建立新的预测模型。
    • 模型评估。对新的预测模型的准确性评价是基于模型预测能够预测出正确结果的能力进行的。在输入和输出值已知的情况下,预测模型的精度用其置信因子是否接近整数1来衡量。
    • 模型改进与评价。不断地通过比较、对比、模型结合找出最佳的组合方式使得模型能够始终对大部分预测任务得准确的结果。
    • 模型部署。将新的预测模型发布成一个web云服务,使得任意其他浏览器或移动客户端可以通过网络方便的访问我们的预测模型。

    我们的机器学习之旅的下一站是探索隐藏于Azure机器学习技术下的各种学习理论和算法,以便于我们能够更好的利用Azure的机器学习工具使其发挥最大效力。机器学习算法通常分为两大类:有监督学习和无监督的学习。下一节我们将详细探讨这些基础内容。

    Azure机器学习提供了一种针对特定问题利用其历史数据建立一个模型来成功的预测将来的动作或趋势的方式。在本章中,我们了解了Azure机器学习高级的工作流程和创建一个预测模型所需的模型建立、模型评估、模型部署以及测试反馈一系列循环迭代过程。

    值得庆幸的是,要想运用Azure机器学习,有数据科学理论和预测模型算法方面的知识是很好的但这并不是必须的条件。当前,Azure机器学习中运用的主要预测分析算法有分类、回归和聚类。

    利用Azure机器学习来实现一个基于有监督或无监督的预测模型是比较简单的。现如今有越来越多的以指数级增长的历史交易数据可用,结合大量无处不在的以微软Azure形式存在的计算能力,我们完全具备条件来制造一场令人折服且行之有效的预测服务"完美风暴"。

    资源

    想要了解关于Azure机器学习的更多信息,请查看一下资源:

    参考资料

    • 什么是Azure Machine Learning Studio
    • Azure Machine Learning Studio中创建简单的实例

    Videos 影像资料

          

  • 相关阅读:
    什么是webview
    juqery.fn.extend和jquery.extend
    LeetCode
    5. Longest Palindromic Substring
    42. Trapping Rain Water
    11. Container With Most Water
    621. Task Scheduler
    49. Group Anagrams
    739. Daily Temperatures
    3. Longest Substring Without Repeating Characters
  • 原文地址:https://www.cnblogs.com/xuesong/p/5084904.html
Copyright © 2011-2022 走看看