zoukankan      html  css  js  c++  java
  • 二分+回溯+剪枝::1723. 完成所有工作的最短时间

    力扣每日一题:

    给你一个整数数组 jobs ,其中 jobs[i] 是完成第 i 项工作要花费的时间。

    请你将这些工作分配给 k 位工人。所有工作都应该分配给工人,且每项工作只能分配给一位工人。工人的 工作时间 是完成分配给他们的所有工作花费时间的总和。请你设计一套最佳的工作分配方案,使工人的 最大工作时间 得以 最小化 。

    返回分配方案中尽可能 最小 的 最大工作时间 。

    示例 1:

    输入:jobs = [3,2,3], k = 3
    输出:3
    解释:给每位工人分配一项工作,最大工作时间是 3 。
    示例 2:

    输入:jobs = [1,2,4,7,8], k = 2
    输出:11
    解释:按下述方式分配工作:
    1 号工人:1、2、8(工作时间 = 1 + 2 + 8 = 11)
    2 号工人:4、7(工作时间 = 4 + 7 = 11)
    最大工作时间是 11 。
     

    提示:

    1 <= k <= jobs.length <= 12
    1 <= jobs[i] <= 107

    直接很难求出最小的最大工作时间在这里设为limit,先想到暴力,枚举每一个可能的limit(可用二分),然后判断是否可行(搜索过程),然后简化,利用二分查找简化枚举过程。
    1,为什么能用二分?如果当前limit不可行,则比这个limit更小的都不可行,如果当前这个limit可行,那么可能存在更小的可行的limit。
    2,判断合法:k个工人无差别用一层循环判断是否可执行当前人物,如果可行则递归搜索下一个任务,分配任务按照先分配工作量大的任务,这样能避免小任务分配完大任务无法分配的现象。

    class Solution {
    public:
        bool backtrack(vector<int>& jobs, vector<int>& workloads, int idx, int limit) {
            if (idx >= jobs.size()) {
                return true;
            }
            int cur = jobs[idx];
            for (auto& workload : workloads) {
                if (workload + cur <= limit) {
                    workload += cur;
                    if (backtrack(jobs, workloads, idx + 1, limit)) {
                        //剩下的工作都能按照limit分配
                        //直接返回可行
                        return true;
                    }
                    //不可行
                    workload -= cur;
                }
                // 如果当前工人未被分配工作,那么下一个工人也必然未被分配工作
                // 或者当前工作恰能使该工人的工作量达到了上限
                // 这两种情况下我们无需尝试继续分配工作
                if (workload == 0 || workload + cur == limit) {
                    break;
                }
            }
            return false;
        }
        bool check(vector<int>& jobs, int k, int limit) {
            vector<int> workloads(k, 0);
            return backtrack(jobs, workloads, 0, limit);
        }
    
        int minimumTimeRequired(vector<int>& jobs, int k) {
            sort(jobs.begin(), jobs.end(), greater<int>());//按照工作量从大到小排序
            //对limit做二分查找,左边界为所有工作量的最大值,右边界为所有工作量之和
            int l = jobs[0], r = accumulate(jobs.begin(), jobs.end(), 0);
            //accumulate(迭代器的起始位置,迭代器的终止位置,和的初始值)
            while (l < r) {
                int mid = (l + r) >> 1;
                if (check(jobs, k, mid)) {
                    r = mid;
                }
                else {
                    l = mid + 1;
                }
            }
            return l;
        }
        int minimumTimeRequeired(vector<int>& jobs, int k) {
            sort(jobs.begin(), jobs.end(),greater<int>());
            int l = jobs[0]; int r = accumulate(jobs.begin(), jobs.end(), 0);
            while (l < r) {
                int mid = (l + r) >> 1;//右移一位等于整除2
                if (check(jobs, k, mid)) {
                    r = mid;
                }
                else {
                    l = mid + 1;
                }
            }
            return l;
        }
    };
  • 相关阅读:
    对数线性模型与线性链条件随机场
    25匹马,5个跑道,每个跑道最多能有1匹马进行比赛,最少比多少次能比出前3名?前5名?
    SVM 与 LR的异同
    EM算法简易推导
    K-means算法的优缺点
    自助采样包含训练集里63.2%的样本?
    指数加权移动平均
    oracle 对于用户的相关操作
    docker 安装 maven 私有库 nexus3
    idea 自动注入@Autowired 警告 Field injection is not recommended 关闭
  • 原文地址:https://www.cnblogs.com/xujiakang123/p/14746594.html
Copyright © 2011-2022 走看看