堆
逻辑结构:
1
/
1 3
/ /
4 5 6 null
物理结构;
1.首先堆是一个完全二叉查找书(Complete Binary Search Tree)树,观察一下堆的逻辑结构和物理结构,逻辑结构是一颗完全二叉查找树,物理结构是一个数组.
性质:堆的实现是通过构造二叉堆,这种数据结构具有一下几个性质:
1.任意节点小于它的所有后裔,最小元素在堆的根上(堆序性)。
2.堆总是一颗完全树。(Complete Tree)
3.将根节点的最大堆叫做Max Heap,最小堆叫做Min Heap。
4.左子节点=index of parent *2+1;
5.右子节点=index of parent*2+2;
支持的基本操作:
1.insert:向堆中插入一个新元素:Time Complete:O(log(n));
2.update:将新元素更新使其符合堆的性质:Time Complete:O(log(n));
3.get/top:获取当前堆顶元素的值:Time Complete:O(1);
4.pop:删除堆顶元素的值:Time Complete:O(log(n));
5.heapify:使得一个Unsorted array的元素变成一个堆:时间复杂度是O(c*n);
经典的算法题;
1.从没有排序的n个元素中发现最小的K个元素。
重点:面试问到这个问题,首先需要向面试官问清楚具体情况,k和n的大小关系。
Solution1:
使用快排排序这个元素,然后返回前K个元素。
Solution2:
Step1:首先建立一个最小堆 O(n);
Step2:弹出前K个最小的元素 O(klogn);
依据上面堆的基本操作得出:Total Time Complete:O(n+klog(n));
Solution3:
Step1:建立一个包含K个元素的最大堆。
Step2:循环迭代从第k+1个元素到第n个元素,然后对于当前的X;
case1:
if X<max-heap.top(),max-heap.pop(),and max-heap.insert(X); --->log(k)
Case2:
else, do nothing;
依据上面的堆的基本操作得出: Total Time Complete:= O(K)+O((n-k)logk);
Case1: k <<< a e.g. k=20 n=1 billion
O(c * n) O(n*(logk))
依赖于具体的情况。
Case2: k~n e.g. k~0.5 billion n=1 billion
O(nlogn) O(nlogn)
结论:解法2和解法3,我们很难去说哪一个更好(因为它依赖于具体的k和n的大小).
Sulution4:
quick sort partition.(分区快排,直接干掉一半不需要的)
smaller larger
xxxxxxxxxxxxxxxxxxx P1 xxxxxxxxxxxxxxxxxxxx n = 10000, k=300;
pviot
smaller larger
xxxxx P2 xxxxx n = 5000,k = 300;
pivot
smaller larger
xx p3 xxx n=2500 ,k=300
pivot
smaller larger n = 2499 ,k = 299
x p4 xxxxx
Quick partiotion:
worst case:O(n*2)
Average case:O(n) n+n/2+n/4+n/8;