Java的线程锁是可重入的锁。
什么是可重入的锁?我们还是来看例子:
public class Counter { private int count = 0; public synchronized void add(int n) { if (n < 0) { dec(-n); } else { count += n; } } public synchronized void dec(int n) { count += n; } }
观察synchronized
修饰的add()
方法,一旦线程执行到add()
方法内部,说明它已经获取了当前实例的this
锁。如果传入的n < 0
,将在add()
方法内部调用dec()
方法。由于dec()
方法也需要获取this
锁,现在问题来了:
对同一个线程,能否在获取到锁以后继续获取同一个锁?
答案是肯定的。JVM允许同一个线程重复获取同一个锁,这种能被同一个线程反复获取的锁,就叫做可重入锁。
由于Java的线程锁是可重入锁,所以,获取锁的时候,不但要判断是否是第一次获取,还要记录这是第几次获取。每获取一次锁,记录+1,每退出synchronized
块,记录-1,减到0的时候,才会真正释放锁。
死锁
一个线程可以获取一个锁后,再继续获取另一个锁。例如:
public void add(int m) { synchronized(lockA) { // 获得lockA的锁 this.value += m; synchronized(lockB) { // 获得lockB的锁 this.another += m; } // 释放lockB的锁 } // 释放lockA的锁 } public void dec(int m) { synchronized(lockB) { // 获得lockB的锁 this.another -= m; synchronized(lockA) { // 获得lockA的锁 this.value -= m; } // 释放lockA的锁 } // 释放lockB的锁 }
在获取多个锁的时候,不同线程获取多个不同对象的锁可能导致死锁。对于上述代码,线程1和线程2如果分别执行add()
和dec()
方法时:
- 线程1:进入
add()
,获得lockA
; - 线程2:进入
dec()
,获得lockB
。
随后:
- 线程1:准备获得
lockB
,失败,等待中; - 线程2:准备获得
lockA
,失败,等待中。
此时,两个线程各自持有不同的锁,然后各自试图获取对方手里的锁,造成了双方无限等待下去,这就是死锁。
死锁发生后,没有任何机制能解除死锁,只能强制结束JVM进程。
因此,在编写多线程应用时,要特别注意防止死锁。因为死锁一旦形成,就只能强制结束进程。
那么我们应该如何避免死锁呢?答案是:线程获取锁的顺序要一致。即严格按照先获取lockA
,再获取lockB
的顺序,改写dec()
方法如下:
public void dec(int m) { synchronized(lockA) { // 获得lockA的锁 this.value -= m; synchronized(lockB) { // 获得lockB的锁 this.another -= m; } // 释放lockB的锁 } // 释放lockA的锁 }