zoukankan      html  css  js  c++  java
  • 《Interest Rate Risk Modeling》阅读笔记——第四章:M-absolute 和 M-square 风险度量

    第四章:M-absolute 和 M-square 风险度量

    思维导图

    从第四章开始比较难了

    (M^A)(M^2) 控制了组合预期变化的下限

    两个重要不等式的推导

    首先有

    [V_0 = sum_{t=t_1}^{t_n} CF_t e^{-int_0^t f(s)ds} ]

    [egin{aligned} V_H &= V_0 e^{int_0^H f(s)ds}\ &= sum_{t=t_1}^{t_n} CF_t e^{-int_0^t f(s)ds} e^{int_0^H f(s)ds}\ &= sum_{t=t_1}^{t_n} CF_t e^{int_t^H f(s)ds} end{aligned} ]

    以及

    [V_H^{prime} = sum_{t=t_1}^{t_n} CF_t e^{int_t^H f^{prime}(s)ds} ]

    那么

    [egin{aligned} frac{V_H^{prime} - V_H}{V_H} &= frac{1}{V_0 e^{int_0^H f(s)ds}} sum_{t=t_1}^{t_n} CF_t (e^{int_t^H f^{prime}(s)ds} - e^{int_t^H f(s)ds})\ &=frac{1}{V_0}sum_{t=t_1}^{t_n} CF_t[e^{int_t^H f(s)ds}(e^{int_t^H Delta f(s)ds}-1)]e^{-int_0^H f(s)ds}\ &=frac{1}{V_0}sum_{t=t_1}^{t_n} CF_te^{-int_0^t f(s)ds}(e^{int_t^H Delta f(s)ds}-1) end{aligned} ]

    [h(t) = int_t^H Delta f(s)ds ]

    关于 (M^A) 的不等式

    (Delta f(t)) 的边界分别是 (K_1)(K_2),即 (K_1 le Delta f(t) le K_2)

    (H>t)

    [h(t) ge K_1(H-t) = K_1 |t-H| ]

    (H le t)

    [h(t) ge -K_2(t-H) = -K_2|t-H| ]

    于是

    [h(t) ge min(K_1, -K_2)|t-H| ]

    [egin{aligned} min (K_1, -K_2) &= -max(-K_1, K_2)\ &ge -max(|K_1|, |K_2|)\ &=-K_3 end{aligned} ]

    [h(t) ge -K_3|t-H| ]

    已知

    [e^x - 1 ge x ]

    那么

    [egin{aligned} frac{V_H^{prime} - V_H}{V_H} & =frac{1}{V_0}sum_{t=t_1}^{t_n} CF_te^{-int_0^t f(s)ds}(e^{int_t^H Delta f(s)ds}-1)\ & ge frac{1}{V_0}sum_{t=t_1}^{t_n} CF_te^{-int_0^t f(s)ds}h(t)\ & ge frac{1}{V_0}sum_{t=t_1}^{t_n} CF_te^{-int_0^t f(s)ds} (-K_3|t-H|)\ & = -K_3M^A end{aligned} ]

    关于 (M^2) 的不等式

    [frac{dDelta f(t)}{dt} = g(t) le K_4 ]

    那么

    [egin{aligned} h(t) &= int_t^H Delta f(s)ds\ & = tDelta f(t)|_{t}^{H} - int_t^H s g(s)ds\ & = HDelta f(H) - tDelta f(t) - int_t^H s g(s)ds\ & = (H-t)Delta f(H) + tDelta f(H) - tDelta f(t) - int_t^H s g(s)ds\ & = (H-t)Delta f(H) + tint_t^H g(s)ds - int_t^H s g(s)ds\ & = (H-t)Delta f(H) + int_t^H(t-s) g(s)ds\ end{aligned} ]

    (H>t)

    [egin{aligned} int_t^H (t-s) g(s)ds & ge int_t^H (t-s) K_4ds\ &=-K_4(t-H)^2/2 end{aligned} ]

    (H le t)

    [egin{aligned} int_t^H (t-s) g(s)ds & = -int_H^t (t-s) g(s)ds\ & ge -int_H^t (t-s) K_4ds\ & = -K_4(t-H)^2/2 end{aligned} ]

    那么

    [h(t) ge (H-t)Delta f(H) -K_4(t-H)^2/2 ]

    已知

    [e^x - 1 ge x ]

    那么

    [egin{aligned} frac{V_H^{prime} - V_H}{V_H} & =frac{1}{V_0}sum_{t=t_1}^{t_n} CF_te^{-int_0^t f(s)ds}(e^{int_t^H Delta f(s)ds}-1)\ & ge frac{1}{V_0}sum_{t=t_1}^{t_n} CF_te^{-int_0^t f(s)ds}h(t)\ & ge frac{1}{V_0}sum_{t=t_1}^{t_n} CF_te^{-int_0^t f(s)ds} left((H-t)Delta f(H) -K_4(t-H)^2/2 ight)\ & = (H-D)Delta f(H) -K_4M^2/2 end{aligned} ]

    凸性效应(CE)和风险效应(RE)的推导

    [egin{aligned} R(H) &= frac{V_H^{prime} - V_0}{V_0}\ &=frac{sum_{t=t_1}^{t_n} CF_t e^{int_t^H f^{prime}(s)ds}}{sum_{t=t_1}^{t_n} CF_t e^{-int_0^t f(s)ds}} - 1\ &=frac{sum_{t=t_1}^{t_n} CF_t e^{int_0^H f^{prime}(s)ds - int_0^t f^{prime}(s)ds}}{sum_{t=t_1}^{t_n} CF_t e^{-int_0^t f(s)ds}} - 1\ &=frac{e^{int_0^H f^{prime}(s)ds}sum_{t=t_1}^{t_n} CF_t e^{-int_0^t f(s)ds}e^{-int_0^t Delta f(s)ds}}{sum_{t=t_1}^{t_n} CF_t e^{-int_0^t f(s)ds}} - 1\ &=frac{e^{int_0^H f(s) + Delta f(s)ds}sum_{t=t_1}^{t_n} CF_t e^{-int_0^t f(s)ds}e^{-int_0^t Delta f(s)ds}}{sum_{t=t_1}^{t_n} CF_t e^{-int_0^t f(s)ds}} - 1\ &=frac{e^{int_0^H f(s)}sum_{t=t_1}^{t_n} CF_t e^{-int_0^t f(s)ds}e^{int_t^H Delta f(s)ds}}{sum_{t=t_1}^{t_n} CF_t e^{-int_0^t f(s)ds}} - 1\ end{aligned} ]

    [R_F(H) = e^{int_0^H f(s)ds} - 1 ]

    [k(t) = e^{int_t^H Delta f(s)ds} ]

    (k(t))(H) 做 Taylor 展开

    [egin{aligned} k(t) &= e^{int_t^H Delta f(s)ds}\ &= e^{-int_H^t Delta f(s)ds}\ &= k(H) + (t-H)k'(H) + frac{1}{2}(t-H)^2k''(H) + varepsilon\ &= 1 + (t-H)(-Delta f(H)) + frac{1}{2}(t-H)^2(Delta f(H)^2 - frac{d(Delta f(t))}{dt}|_{t=H}) + varepsilon\ &= 1 + (t-H)(-Delta f(H)) + frac{1}{2}(t-H)^2(Delta f(H)^2 - g(H)) + varepsilon\ end{aligned} ]

    代入得到

    [egin{aligned} R(H) &= R_F(H) + gamma_1 (D-H) + gamma_2 M^2 + varepsilon\ gamma_1 &= -Delta f(H)(1+R_F(H))\ gamma_2 &= frac{1}{2}(1+R_F(H))(Delta f(H)^2 - g(H))\ gamma_2 &= CE - RE\ CE &= frac{1}{2}(1+R_F(H))Delta f(H)^2\ RE &= frac{1}{2}(1+R_F(H))g(H) end{aligned} ]

  • 相关阅读:
    一个简单的jsp自定义标签
    js正则表达式学习
    java获取当前日期等以及时区
    java日期处理SimpleDateFormat等
    一个炫酷的导航菜单,模仿别人写的
    后台管理界面自己写,模仿,更新中...
    信息收集-主机综合扫描工具的使用
    ms10_046_shortcut_icon_dllloader漏洞利用和ettercap dns欺骗
    如何成为一名黑客
    msf常用命令
  • 原文地址:https://www.cnblogs.com/xuruilong100/p/12024987.html
Copyright © 2011-2022 走看看