第九章:关键利率久期和 VaR 分析
思维导图
一些想法
- 在解关键方程的时候施加 (L^1) 约束也许可以得到“稀疏解”,进而减少交易成本。
- 借鉴样条插值拟合期限结构时选择 knot 的方法选择关键期限。
有关现金流映射技术的推导
已知,
[Delta y(t) =
egin{cases}
Delta y(t_{first}) & t le t_{first}\
Delta y(t_{last}) & t ge t_{last}\
alpha Delta y(t_{left}) + (1-alpha) Delta y(t_{right})& ext{ else}
end{cases}
]
[alpha = frac{t_{right}-t}{t_{right} - t_{left}}
]
[t_{left} < t < t_{right}
]
求解 (CF_{left})、(CF_{right}) 和 (CF_0) 使得:
[egin{aligned}
P &= frac{CF_t}{e^{y(t)t}} \
&= frac{CF_{left}}{e^{y(t_{left})t_{left}}} + frac{CF_{right}}{e^{y(t_{right})t_{right}}} + CF_0
end{aligned} ag{1}
]
要求关键利率久期不变,那么:
[egin{aligned}
frac{1}{P} frac{partial P}{partial y(t_{left})}
&=frac{1}{P} frac{partial P}{partial y(t)} frac{partial y(t)}{partial y(t_{left})}\
&approxfrac{1}{P} frac{partial P}{partial y(t)} frac{Delta y(t)}{Delta y(t_{left})}\
&approx-frac{1}{P} frac{CF_t imes t}{e^{y(t)t}} alpha\
&=-talpha \
frac{1}{P} frac{partial P}{partial y(t_{left})}
&=frac{1}{P} frac{partial left(frac{CF_{left}}{e^{y(t_{left})t_{left}}} + frac{CF_{right}}{e^{y(t_{right})t_{right}}} + CF_0
ight) }{partial y(t_{left})}\
&=-frac{1}{P} frac{CF_{left} imes t_{left}}{e^{y(t_{left})t_{left}}}
end{aligned}
]
解出
[CF_{left} = frac{t alpha P e^{y(t_{left})t_{left}}}{t_{left}} ag{2}
]
同理解出
[CF_{right} = frac{t (1-alpha) P e^{y(t_{right})t_{right}}}{t_{right}} ag{3}
]
(2)和(3)代入(1)解出
[CF_0 = P imes frac{(t-t_{left})(t-t_{right})}{t_{left} imes t_{right}}
]