zoukankan      html  css  js  c++  java
  • 《Interest Rate Risk Modeling》阅读笔记——第九章:关键利率久期和 VaR 分析

    第九章:关键利率久期和 VaR 分析

    思维导图

    一些想法

    • 在解关键方程的时候施加 (L^1) 约束也许可以得到“稀疏解”,进而减少交易成本。
    • 借鉴样条插值拟合期限结构时选择 knot 的方法选择关键期限。

    有关现金流映射技术的推导

    已知,

    [Delta y(t) = egin{cases} Delta y(t_{first}) & t le t_{first}\ Delta y(t_{last}) & t ge t_{last}\ alpha Delta y(t_{left}) + (1-alpha) Delta y(t_{right})& ext{ else} end{cases} ]

    [alpha = frac{t_{right}-t}{t_{right} - t_{left}} ]

    [t_{left} < t < t_{right} ]

    求解 (CF_{left})(CF_{right})(CF_0) 使得:

    [egin{aligned} P &= frac{CF_t}{e^{y(t)t}} \ &= frac{CF_{left}}{e^{y(t_{left})t_{left}}} + frac{CF_{right}}{e^{y(t_{right})t_{right}}} + CF_0 end{aligned} ag{1} ]

    要求关键利率久期不变,那么:

    [egin{aligned} frac{1}{P} frac{partial P}{partial y(t_{left})} &=frac{1}{P} frac{partial P}{partial y(t)} frac{partial y(t)}{partial y(t_{left})}\ &approxfrac{1}{P} frac{partial P}{partial y(t)} frac{Delta y(t)}{Delta y(t_{left})}\ &approx-frac{1}{P} frac{CF_t imes t}{e^{y(t)t}} alpha\ &=-talpha \ frac{1}{P} frac{partial P}{partial y(t_{left})} &=frac{1}{P} frac{partial left(frac{CF_{left}}{e^{y(t_{left})t_{left}}} + frac{CF_{right}}{e^{y(t_{right})t_{right}}} + CF_0 ight) }{partial y(t_{left})}\ &=-frac{1}{P} frac{CF_{left} imes t_{left}}{e^{y(t_{left})t_{left}}} end{aligned} ]

    解出

    [CF_{left} = frac{t alpha P e^{y(t_{left})t_{left}}}{t_{left}} ag{2} ]

    同理解出

    [CF_{right} = frac{t (1-alpha) P e^{y(t_{right})t_{right}}}{t_{right}} ag{3} ]

    (2)和(3)代入(1)解出

    [CF_0 = P imes frac{(t-t_{left})(t-t_{right})}{t_{left} imes t_{right}} ]

  • 相关阅读:
    设计模式总结
    内存模型
    运行时内存
    网络
    iOS安全攻防(十)dump自己的app
    iOS安全攻防(九)使用Theos开发SpringBoard的Tweat
    iOS安全攻防(八)Thoes的Logos简介
    iOS安全攻防(七)使用iOSOpenDev开发SpringBoard的Tweat
    iOS安全攻防(六)使用class-dump导出Frameworks头文件
    iOS安全攻防(五)使用dpkg安装deb到iOS设备
  • 原文地址:https://www.cnblogs.com/xuruilong100/p/12244274.html
Copyright © 2011-2022 走看看