zoukankan      html  css  js  c++  java
  • 牛客网多校训练第四场C sequence

    (牛客场场有笛卡尔树,场场都不会用笛卡尔树。。。自闭,补题心得)

    题目链接:https://ac.nowcoder.com/acm/contest/884/C

    题意:给出两个序列a,b,求max{min a[l,r]*sum b[l,r]}

    一个比较显然的做法是通过线段树/ST表维护区间最值,不过nlogn的做法容易被卡常,(zkw线段树可过)不过赛时提高了时限到3s,基本上就很好写了

    直接维护区间最小/大值下标,然后从最小值开始进行计算答案,在最小值的左边找到最小/最大的前缀和(找最大是为了处理min a[i]<0的情况),最小值的右边也找到最小/最大值的前缀和,计算一次答案,然后以最小值为分界,划分为两部分继续计算即可

    线段树查询效率logn,总复杂度O(nlogn),ST表预处理nlogn,总复杂度也是O(nlogn)且常数较大,赛后发现有神仙用了O(n)的做法,也学习了一下,没错,就是神奇的笛卡尔树

    我们分析这个求解答案的过程,发现就是先找最小值,然后找次小...的顺序,我们对a数组构建笛卡尔树,那么这个求解答案的过程就是对树的dfs的过程,既然是对树的dfs,我们就可以用mn[rt],mx[rt]数组来记录以rt为根这颗子树中包含前缀和的最小前缀和,

    然后在dfs的过程中,用子树不断更新即可,然后我们O(1)地计算每颗子树的答案即可,总体复杂度是O(n)的

    笛卡尔树:

    通过单调栈来构造,这个过程是O(n)的,每次元素x入栈,找到前一个比他小的元素p,那么它就是这颗笛卡尔树上元素p对应节点的右儿子,原先的右儿子q变成了当前插入元素x的左儿子,原先的右儿子q也就是最后一个出栈的元素,如果没有元素出栈,那就是作为一个叶子节点插入了笛卡尔树,插入位置是未入栈时栈顶元素的右儿子

    笛卡尔树的性质:元素下标满足二叉搜索树的性质,元素值满足堆的性质

    笛卡尔树根节点是单调栈栈底元素,也是整个序列的最小值,每颗子树的根节点都是一个范围内的极小值,树上两个元素的LCA可以用来解决RMQ问题

    #include <bits/stdc++.h>
    using namespace std;
    using ll = long long;
    const int N  = 3e6+5;
    int a[N];
    ll b[N];
    int son[N][2],n;//0左儿子1右儿子
    int sta[N];
    ll mn[N],mx[N];//记录当前子树中最小、最大的前缀和
    ll ans=-3e18;
    void dfs(int rt,int l,int r)
    {
        if(son[rt][0])dfs(son[rt][0],l,rt-1);
        if(son[rt][1])dfs(son[rt][1],rt+1,r);
        //左子树不包括l-1这个点,然而我们要将这个前缀和考虑进去,否则会少计算到b[l],右子树不包括根节点,b[rt]也要考虑进去
        ll minl=min(mn[son[rt][0]],b[l-1]);
        ll maxl=max(mx[son[rt][0]],b[l-1]);
        ll minr=min(mn[son[rt][1]],b[rt]);
        ll maxr=max(mx[son[rt][1]],b[rt]);
        ans=max(ans,a[rt]*(maxr-minl));
        ans=max(ans,a[rt]*(minr-maxl));
        //这样写同时也把当前子树根考虑进去了
        mn[rt]=min(minl,minr);
        mx[rt]=max(maxl,maxr);
    }
    int main()
    {
        int n;
        ios::sync_with_stdio(false);
        cin.tie(0);
        cout.tie(0);
        cin>>n;
        int top=0;
        for(int i=1;i<=n;i++)
        {
            cin>>a[i];
            while (top&&a[i]<a[sta[top]])son[i][0]=sta[top--];
            if(top)son[sta[top]][1]=i;
            sta[++top]=i;
        }
        for(int i=1;i<=n;i++)
        {
            cin>>b[i];
            b[i]+=b[i-1];
        }
        mn[0]=3e18;mx[0]=-3e18;
        dfs(sta[1],1,n);
        cout<<ans<<endl;
        return 0;
    }
  • 相关阅读:
    解决CollectionView TableView reloadData或者reloadSections时的刷新的闪烁问题
    HTTP请求头
    Fastlane 使用笔记
    python-函数式编程
    python-高级特性
    python基础使用
    python基础-函数02
    python基础-函数01
    python基础
    Linux基础
  • 原文地址:https://www.cnblogs.com/xusirui/p/11257553.html
Copyright © 2011-2022 走看看