zoukankan      html  css  js  c++  java
  • NEU 1040 Count

    1040: Count

    时间限制: 1 Sec  内存限制: 128 MB
    提交: 59  解决: 23
    [提交][状态][讨论版]

    题目描述

    Many ACM team name may be very funny,such as "Complier_Error","VVVVV".Oh,wait for a minute here.

    Is it "W W"+"V",or "W"+"V V V",or something others we can treat as?There are several ways we can treat this name "VVVVV" (5 'V's),as V V can be treat as a W.

    For 5 'V's,our have 8 ways.They are:

    1. V V V V V

    2. V W W

    3. W W V

    4. V W V V

    5. W V W

    6. W V V V

    7. V V W V

    8. V V V W

    The problem here is that for n 'V's,how many ways do we have to treat it?Because the answer may be too large, you should output the answer module by p.(If n is 0,then we have just one way.)

    输入

    There are multiple test cases. The first line of the input contains an integer M, meaning the number of the test cases.
    For each test cases, there are two integers n and p in a single line.
    You can assume that 0<=n<=21000000000<p<=2009.

    输出

    For each test case, output the answer with case number in a single line.

    样例输入

    2
    5 5
    4 7

    样例输出

    3
    5


    题目大意:
    就是说给你5个V的话“VVVVV”,可能有一部分V连在一起被看做W,问可以看出多少种序列,答案对p取余。
    输入:
    第一行一个M表示有M个测试数据,
    第二行到第M+1行每行两个整数n,p,表示n个V,对p取余。
    输出:
    一个整数,要求如题。

    菲波那切数列??应该吧

    好吧,就是斐波那契额,n的数目由n-1和n-2继承来,n比较大,所以矩阵乘法快速幂优化一下递推

     1 #include<cstdio>
     2 #include<cstring>
     3 int p;
     4 struct matrix
     5 {
     6     int a[2][2];
     7     matrix(matrix &p)
     8     {
     9         for(int i=0;i<2;i++)
    10             for(int j=0;j<2;j++)
    11                 this->a[i][j]=p.a[i][j];
    12     }
    13     matrix(int x)
    14     {
    15         for(int i=0;i<2;i++)
    16             for(int j=0;j<2;j++)
    17                 this->a[i][j]=x;
    18     }
    19     matrix()
    20     {
    21         memset(a,0,sizeof(a));
    22         for(int j=0;j<2;j++)
    23             this->a[j][j]=1;
    24     }
    25     matrix operator * (matrix &b)
    26     {
    27         matrix c;
    28         for(int i=0;i<2;i++)
    29             for(int j=0;j<2;j++)
    30             {
    31                 c.a[i][j]=0;
    32                 for(int k=0;k<2;k++)
    33                 {
    34                     c.a[i][j]+=this->a[i][k]*b.a[k][j];
    35                 }
    36                 c.a[i][j]%=p;
    37             }
    38         return c;
    39     }
    40 };
    41 matrix quickmult(matrix &a,int k)
    42 {
    43     matrix ans,temp(a);
    44     while(k)
    45     {
    46         if(k%2)ans=ans*temp;
    47         temp=temp*temp;
    48         k/=2;
    49     }
    50     return ans;
    51 }
    52 int main()
    53 {
    54     int m,n;
    55     scanf("%d",&m);
    56     while(m--)
    57     {
    58         scanf("%d%d",&n,&p);
    59         matrix ini,tra;//ini means initial matrix, tra means transform matrix
    60         ini.a[0][0]=1;ini.a[0][1]=1;ini.a[1][0]=0;ini.a[1][1]=0;
    61         tra.a[0][0]=0;tra.a[0][1]=1;tra.a[1][0]=1;tra.a[1][1]=1;
    62         tra=quickmult(tra,n);
    63         ini=ini*tra;
    64         printf("%d
    ",ini.a[0][0]);
    65     }
    66     return 0;
    67 }
     
  • 相关阅读:
    hdu 1028 母函数 一个数有几种相加方式
    第m个全排列
    大数处理
    并查集
    KMP算法及KMP算法的应用(POJ2406)
    算法---分治法
    末学者笔记--NTP服务和DNS服务
    末学者笔记--NFS服务和DHCP服务讲解
    末学者笔记--SSHD服务及SCP用法
    末学者笔记——SAMBA服务、FTP服务讲解
  • 原文地址:https://www.cnblogs.com/xuwangzihao/p/4992574.html
Copyright © 2011-2022 走看看