zoukankan      html  css  js  c++  java
  • 数据库主从复制原理

    参考:

    https://blog.csdn.net/hguisu/article/details/7325124

    https://www.cnblogs.com/xihuineng/p/10438969.html 

    https://blog.csdn.net/keil_wang/article/details/88669587

    https://zhuanlan.zhihu.com/p/50597960 

    https://blog.csdn.net/hangxing_2015/article/details/52585855

    高性能Mysql主从架构的复制原理及配置详解

    温习《高性能MySQL》的复制篇.

    1 复制概述


          Mysql内建的复制功能是构建大型,高性能应用程序的基础。将Mysql的数据分布到多个系统上去,这种分布的机制,是通过将Mysql的某一台主机的数据复制到其它主机(slaves)上,并重新执行一遍来实现的。复制过程中一个服务器充当主服务器,而一个或多个其它服务器充当从服务器。主服务器将更新写入二进制日志文件,并维护文件的一个索引以跟踪日志循环。这些日志可以记录发送到从服务器的更新。当一个从服务器连接主服务器时,它通知主服务器从服务器在日志中读取的最后一次成功更新的位置。从服务器接收从那时起发生的任何更新,然后封锁并等待主服务器通知新的更新。

    请注意当你进行复制时,所有对复制中的表的更新必须在主服务器上进行。否则,你必须要小心,以避免用户对主服务器上的表进行的更新与对从服务器上的表所进行的更新之间的冲突。

    1.1 mysql支持的复制类型:

      (1):基于语句的复制:  在主服务器上执行的SQL语句,在从服务器上执行同样的语句。MySQL默认采用基于语句的复制,效率比较高。  
                一旦发现没法精确复制时,   会自动选着基于行的复制。    
      (2):基于行的复制:把改变的内容复制过去,而不是把命令在从服务器上执行一遍. 从mysql5.0开始支持
      (3):混合类型的复制: 默认采用基于语句的复制,一旦发现基于语句的无法精确的复制时,就会采用基于行的复制。

     1.2 . 复制解决的问题

             MySQL复制技术有以下一些特点:
             (1)    数据分布 (Data distribution )
             (2)    负载平衡(load balancing)
             (3)    备份(Backups) 
             (4)    高可用性和容错行 High availability and failover 

      1.3 复制如何工作 

            整体上来说,复制有3个步骤:   

           (1)    master将改变记录到二进制日志(binary log)中(这些记录叫做二进制日志事件,binary log events);
           (2)    slave将master的binary log events拷贝到它的中继日志(relay log);

            (3)    slave重做中继日志中的事件,将改变反映它自己的数据。

    下图描述了复制的过程:

                                      

              该过程的第一部分就是master记录二进制日志。在每个事务更新数据完成之前,master在二日志记录这些改变。MySQL将事务串行的写入二进制日志,即使事务中的语句都是交叉执行的。在事件写入二进制日志完成后,master通知存储引擎提交事务。
           下一步就是slave将master的binary log拷贝到它自己的中继日志。首先,slave开始一个工作线程——I/O线程。I/O线程在master上打开一个普通的连接,然后开始binlog dump process。Binlog dump process从master的二进制日志中读取事件,如果已经跟上master,它会睡眠并等待master产生新的事件。I/O线程将这些事件写入中继日志。
           SQL slave thread(SQL从线程)处理该过程的最后一步。SQL线程从中继日志读取事件,并重放其中的事件而更新slave的数据,使其与master中的数据一致。只要该线程与I/O线程保持一致,中继日志通常会位于OS的缓存中,所以中继日志的开销很小。
            此外,在master中也有一个工作线程:和其它MySQL的连接一样,slave在master中打开一个连接也会使得master开始一个线程。复制过程有一个很重要的限制——复制在slave上是串行化的,也就是说master上的并行更新操作不能在slave上并行操作。

     2 .主从复制配置


    有两台MySQL数据库服务器Master和slave,Master为主服务器,slave为从服务器,初始状态时,Master和slave中的数据信息相同,当Master中的数据发生变化时,slave也跟着发生相应的变化,使得master和slave的数据信息同步,达到备份的目的。

    要点:
    负责在主、从服务器传输各种修改动作的媒介是主服务器的二进制变更日志,这个日志记载着需要传输给从服务器的各种修改动作。因此,主服务器必须激活二进制日志功能。从服务器必须具备足以让它连接主服务器并请求主服务器把二进制变更日志传输给它的权限。
            
    环境:
    Master和slave的MySQL数据库版本同为5.0.18
    IP地址:10.100.0.100

    2.1、创建复制帐号

    1、在Master的数据库中建立一个备份帐户:每个slave使用标准的MySQL用户名和密码连接master。进行复制操作的用户会授予REPLICATION SLAVE权限。用户名的密码都会存储在文本文件master.info中

    命令如下:
    mysql > GRANT REPLICATION SLAVE,RELOAD,SUPER ON *.* 
    TO backup@’10.100.0.200’ 
    IDENTIFIED BY ‘1234’;

    建立一个帐户backup,并且只能允许从10.100.0.200这个地址上来登陆,密码是1234。

    (如果因为mysql版本新旧密码算法不同,可以设置:set password for 'backup'@'10.100.0.200'=old_password('1234'))

    2.2、拷贝数据

    (假如是你完全新安装mysql主从服务器,这个一步就不需要。因为新安装的master和slave有相同的数据)

    关停Master服务器,将Master中的数据拷贝到B服务器中,使得Master和slave中的数据同步,并且确保在全部设置操作结束前,禁止在Master和slave服务器中进行写操作,使得两数据库中的数据一定要相同!

    2.3、配置master

    接下来对master进行配置,包括打开二进制日志,指定唯一的servr ID。例如,在配置文件加入如下值:

    server-id=1
    log-bin=mysql-bin

    server-id:为主服务器A的ID值
    log-bin:二进制变更日值

    重启master,运行SHOW MASTER STATUS,输出如下:

    2.4、配置slave

    Slave的配置与master类似,你同样需要重启slave的MySQL。如下:
    log_bin           = mysql-bin
    server_id         = 2
    relay_log         = mysql-relay-bin
    log_slave_updates = 1
    read_only         = 1
    server_id:是必须的,而且唯一。

    log_bin:slave没有必要开启二进制日志bin_log,但是在一些情况下,必须设置,例如,如果slave为其它slave的master,必须设置bin_log。在这里,我们开启了二进制日志,而且显示的命名(默认名称为hostname,但是,如果hostname改变则会出现问题)。
    relay_log:配置中继日志,log_slave_updates表示slave将复制事件写进自己的二进制日志(后面会看到它的用处)。
    有些人开启了slave的二进制日志,却没有设置log_slave_updates,然后查看slave的数据是否改变,这是一种错误的配置。

    read_only:尽量使用read_only,它防止改变数据(除了特殊的线程)。但是,read_only并是很实用,特别是那些需要在slave上创建表的应用。

    2.5、启动slave

    接下来就是让slave连接master,并开始重做master二进制日志中的事件。你不应该用配置文件进行该操作,而应该使用CHANGE MASTER TO语句,该语句可以完全取代对配置文件的修改,而且它可以为slave指定不同的master,而不需要停止服务器。如下:

    mysql> CHANGE MASTER TO MASTER_HOST='server1',

        -> MASTER_USER='repl',

        -> MASTER_PASSWORD='p4ssword',

        -> MASTER_LOG_FILE='mysql-bin.000001',

        -> MASTER_LOG_POS=0;

    MASTER_LOG_POS的值为0,因为它是日志的开始位置。

    你可以用SHOW SLAVE STATUS语句查看slave的设置是否正确:

    mysql> SHOW SLAVE STATUSG

    *************************** 1. row ***************************

                 Slave_IO_State:

                    Master_Host: server1

                    Master_User: repl

                    Master_Port: 3306

                  Connect_Retry: 60

                Master_Log_File: mysql-bin.000001

            Read_Master_Log_Pos: 4

                 Relay_Log_File: mysql-relay-bin.000001

                  Relay_Log_Pos: 4

          Relay_Master_Log_File: mysql-bin.000001

               Slave_IO_Running: No

              Slave_SQL_Running: No

                                 ...omitted...

          Seconds_Behind_Master: NULL

    Slave_IO_State, Slave_IO_Running, 和Slave_SQL_Running是No

    表明slave还没有开始复制过程。日志的位置为4而不是0,这是因为0只是日志文件的开始位置,并不是日志位置。实际上,MySQL知道的第一个事件的位置是4。

    为了开始复制,你可以运行:

    mysql> START SLAVE;

    运行SHOW SLAVE STATUS查看输出结果:

    mysql> SHOW SLAVE STATUSG

    *************************** 1. row ***************************

                 Slave_IO_State: Waiting for master to send event

                    Master_Host: server1

                    Master_User: repl

                    Master_Port: 3306

                  Connect_Retry: 60

                Master_Log_File: mysql-bin.000001

            Read_Master_Log_Pos: 164

                 Relay_Log_File: mysql-relay-bin.000001

                  Relay_Log_Pos: 164

          Relay_Master_Log_File: mysql-bin.000001

               Slave_IO_Running: Yes

              Slave_SQL_Running: Yes

                                 ...omitted...

          Seconds_Behind_Master: 0

    在这里主要是看:
                       Slave_IO_Running=Yes
                       Slave_SQL_Running=Yes

    slave的I/O和SQL线程都已经开始运行,而且Seconds_Behind_Master不再是NULL。日志的位置增加了,意味着一些事件被获取并执行了。如果你在master上进行修改,你可以在slave上看到各种日志文件的位置的变化,同样,你也可以看到数据库中数据的变化。

    你可查看master和slave上线程的状态。在master上,你可以看到slave的I/O线程创建的连接:

    在master上输入show processlistG;

    mysql> show processlist G

    *************************** 1. row ***************************

         Id: 1

       User: root

       Host: localhost:2096

         db: test

    Command: Query

       Time: 0

     State: NULL

       Info: show processlist

    *************************** 2. row ***************************

         Id: 2

       User: repl

       Host: localhost:2144

         db: NULL

    Command: Binlog Dump

       Time: 1838

     State: Has sent all binlog to slave; waiting for binlog to be updated

       Info: NULL

    2 rows in set (0.00 sec)

    行2为处理slave的I/O线程的连接。

    在slave服务器上运行该语句:

    mysql> show processlist G

    *************************** 1. row ***************************

         Id: 1

       User: system user

       Host:

         db: NULL

    Command: Connect

       Time: 2291

     State: Waiting for master to send event

       Info: NULL

    *************************** 2. row ***************************

         Id: 2

       User: system user

       Host:

         db: NULL

    Command: Connect

       Time: 1852

     State: Has read all relay log; waiting for the slave I/O thread to update it

       Info: NULL

    *************************** 3. row ***************************

         Id: 5

       User: root

       Host: localhost:2152

         db: test

    Command: Query

       Time: 0

     State: NULL

       Info: show processlist

    3 rows in set (0.00 sec)

    行1为I/O线程状态,行2为SQL线程状态。

    2.5、添加新slave服务器

    假如master已经运行很久了,想对新安装的slave进行数据同步,甚至它没有master的数据。
    此时,有几种方法可以使slave从另一个服务开始,例如,从master拷贝数据,从另一个slave克隆,从最近的备份开始一个slave。Slave与master同步时,需要三样东西:
    (1)master的某个时刻的数据快照;
    (2)master当前的日志文件、以及生成快照时的字节偏移。这两个值可以叫做日志文件坐标(log file coordinate),因为它们确定了一个二进制日志的位置,你可以用SHOW MASTER STATUS命令找到日志文件的坐标;
    (3)master的二进制日志文件。

    可以通过以下几中方法来克隆一个slave:
    (1)    冷拷贝(cold copy)
    停止master,将master的文件拷贝到slave;然后重启master。缺点很明显。
    (2)    热拷贝(warm copy)
    如果你仅使用MyISAM表,你可以使用mysqlhotcopy拷贝,即使服务器正在运行。
    (3)    使用mysqldump
    使用mysqldump来得到一个数据快照可分为以下几步:
    <1>锁表:如果你还没有锁表,你应该对表加锁,防止其它连接修改数据库,否则,你得到的数据可以是不一致的。如下:
    mysql> FLUSH TABLES WITH READ LOCK;
    <2>在另一个连接用mysqldump创建一个你想进行复制的数据库的转储:
    shell> mysqldump --all-databases --lock-all-tables >dbdump.db
    <3>对表释放锁。
    mysql> UNLOCK TABLES;

    3、深入了解复制


    已经讨论了关于复制的一些基本东西,下面深入讨论一下复制。

    3.1、基于语句的复制(Statement-Based Replication)

         MySQL 5.0及之前的版本仅支持基于语句的复制(也叫做逻辑复制,logical replication),这在数据库并不常见。master记录下改变数据的查询,然后,slave从中继日志中读取事件,并执行它,这些SQL语句与master执行的语句一样。
    这种方式的优点就是实现简单。此外,基于语句的复制的二进制日志可以很好的进行压缩,而且日志的数据量也较小,占用带宽少——例如,一个更新GB的数据的查询仅需要几十个字节的二进制日志。而mysqlbinlog对于基于语句的日志处理十分方便。
     
          但是,基于语句的复制并不是像它看起来那么简单,因为一些查询语句依赖于master的特定条件,例如,master与slave可能有不同的时间。所以,MySQL的二进制日志的格式不仅仅是查询语句,还包括一些元数据信息,例如,当前的时间戳。即使如此,还是有一些语句,比如,CURRENT USER函数,不能正确的进行复制。此外,存储过程和触发器也是一个问题。
         另外一个问题就是基于语句的复制必须是串行化的。这要求大量特殊的代码,配置,例如InnoDB的next-key锁等。并不是所有的存储引擎都支持基于语句的复制。

    3.2、基于记录的复制(Row-Based Replication)

          MySQL增加基于记录的复制,在二进制日志中记录下实际数据的改变,这与其它一些DBMS的实现方式类似。这种方式有优点,也有缺点。优点就是可以对任何语句都能正确工作,一些语句的效率更高。主要的缺点就是二进制日志可能会很大,而且不直观,所以,你不能使用mysqlbinlog来查看二进制日志。
    对于一些语句,基于记录的复制能够更有效的工作,如:
    mysql> INSERT INTO summary_table(col1, col2, sum_col3)
        -> SELECT col1, col2, sum(col3)
        -> FROM enormous_table
        -> GROUP BY col1, col2;
         假设,只有三种唯一的col1和col2的组合,但是,该查询会扫描原表的许多行,却仅返回三条记录。此时,基于记录的复制效率更高。
        另一方面,下面的语句,基于语句的复制更有效:
     mysql> UPDATE enormous_table SET col1 = 0;
    此时使用基于记录的复制代价会非常高。由于两种方式不能对所有情况都能很好的处理,所以,MySQL 5.1支持在基于语句的复制和基于记录的复制之前动态交换。你可以通过设置session变量binlog_format来进行控制。

    3.3、复制相关的文件

    除了二进制日志和中继日志文件外,还有其它一些与复制相关的文件。如下:

    (1)mysql-bin.index

    服务器一旦开启二进制日志,会产生一个与二日志文件同名,但是以.index结尾的文件。它用于跟踪磁盘上存在哪些二进制日志文件。MySQL用它来定位二进制日志文件。它的内容如下(我的机器上):

     (2)mysql-relay-bin.index

    该文件的功能与mysql-bin.index类似,但是它是针对中继日志,而不是二进制日志。内容如下:
    .mysql-02-relay-bin.000017
    .mysql-02-relay-bin.000018

    (3)master.info

    保存master的相关信息。不要删除它,否则,slave重启后不能连接master。内容如下(我的机器上):

     I/O线程更新master.info文件,内容如下(我的机器上):

    .mysql-02-relay-bin.000019

    254

    mysql-01-bin.000010

    286

    0

    52813

     (4)relay-log.info 

    包含slave中当前二进制日志和中继日志的信息。

    3.4、发送复制事件到其它slave

    当设置log_slave_updates时,你可以让slave扮演其它slave的master。此时,slave把SQL线程执行的事件写进行自己的二进制日志(binary log),然后,它的slave可以获取这些事件并执行它。如下:

    3.5、复制过滤(Replication Filters)

    复制过滤可以让你只复制服务器中的一部分数据,有两种复制过滤:在master上过滤二进制日志中的事件;在slave上过滤中继日志中的事件。如下:

    4、复制的常用拓扑结构


    复制的体系结构有以下一些基本原则:
    (1)    每个slave只能有一个master;
    (2)    每个slave只能有一个唯一的服务器ID;
    (3)    每个master可以有很多slave;
    (4)    如果你设置log_slave_updates,slave可以是其它slave的master,从而扩散master的更新。

    MySQL不支持多主服务器复制(Multimaster Replication)——即一个slave可以有多个master。但是,通过一些简单的组合,我们却可以建立灵活而强大的复制体系结构。

    4.1、单一master和多slave

    由一个master和一个slave组成复制系统是最简单的情况。Slave之间并不相互通信,只能与master进行通信。

    在实际应用场景中,MySQL复制90%以上都是一个Master复制到一个或者多个Slave的架构模式,主要用于读压力比较大的应用的数据库端廉价扩展解决方案。因为只要Master和Slave的压力不是太大(尤其是Slave端压力)的话,异步复制的延时一般都很少很少。尤其是自从Slave端的复制方式改成两个线程处理之后,更是减小了Slave端的延时问题。而带来的效益是,对于数据实时性要求不是特别Critical的应用,只需要通过廉价的pcserver来扩展Slave的数量,将读压力分散到多台Slave的机器上面,即可通过分散单台数据库服务器的读压力来解决数据库端的读性能瓶颈,毕竟在大多数数据库应用系统中的读压力还是要比写压力大很多。这在很大程度上解决了目前很多中小型网站的数据库压力瓶颈问题,甚至有些大型网站也在使用类似方案解决数据库瓶颈。

    如下:

     如果写操作较少,而读操作很时,可以采取这种结构。你可以将读操作分布到其它的slave,从而减小master的压力。但是,当slave增加到一定数量时,slave对master的负载以及网络带宽都会成为一个严重的问题。
    这种结构虽然简单,但是,它却非常灵活,足够满足大多数应用需求。一些建议:
    (1)    不同的slave扮演不同的作用(例如使用不同的索引,或者不同的存储引擎);
    (2)    用一个slave作为备用master,只进行复制;
    (3)    用一个远程的slave,用于灾难恢复;

    大家应该都比较清楚,从一个Master节点可以复制出多个Slave节点,可能有人会想,那一个Slave节点是否可以从多个Master节点上面进行复制呢?至少在目前来看,MySQL是做不到的,以后是否会支持就不清楚了。

    MySQL不支持一个Slave节点从多个Master节点来进行复制的架构,主要是为了避免冲突的问题,防止多个数据源之间的数据出现冲突,而造成最后数据的不一致性。不过听说已经有人开发了相关的patch,让MySQL支持一个Slave节点从多个Master结点作为数据源来进行复制,这也正是MySQL开源的性质所带来的好处。

    4.2、主动模式的Master-Master(Master-Master in Active-Active Mode)

    Master-Master复制的两台服务器,既是master,又是另一台服务器的slave。这样,任何一方所做的变更,都会通过复制应用到另外一方的数据库中。

    可能有些读者朋友会有一个担心,这样搭建复制环境之后,难道不会造成两台MySQL之间的循环复制么?实际上MySQL自己早就想到了这一点,所以在MySQL的BinaryLog中记录了当前MySQL的server-id,而且这个参数也是我们搭建MySQLReplication的时候必须明确指定,而且Master和Slave的server-id参数值比需要不一致才能使MySQLReplication搭建成功。一旦有了server-id的值之后,MySQL就很容易判断某个变更是从哪一个MySQLServer最初产生的,所以就很容易避免出现循环复制的情况。而且,如果我们不打开记录Slave的BinaryLog的选项(--log-slave-update)的时候,MySQL根本就不会记录复制过程中的变更到BinaryLog中,就更不用担心可能会出现循环复制的情形了。

    如图:

    主动的Master-Master复制有一些特殊的用处。例如,地理上分布的两个部分都需要自己的可写的数据副本。这种结构最大的问题就是更新冲突。假设一个表只有一行(一列)的数据,其值为1,如果两个服务器分别同时执行如下语句:
    在第一个服务器上执行:
    mysql> UPDATE tbl SET col=col + 1;
    在第二个服务器上执行:
    mysql> UPDATE tbl SET col=col * 2;
    那么结果是多少呢?一台服务器是4,另一个服务器是3,但是,这并不会产生错误。
    实际上,MySQL并不支持其它一些DBMS支持的多主服务器复制(Multimaster Replication),这是MySQL的复制功能很大的一个限制(多主服务器的难点在于解决更新冲突),但是,如果你实在有这种需求,你可以采用MySQL Cluster,以及将Cluster和Replication结合起来,可以建立强大的高性能的数据库平台。但是,可以通过其它一些方式来模拟这种多主服务器的复制。

    4.3、主动-被动模式的Master-Master(Master-Master in Active-Passive Mode)

    这是master-master结构变化而来的,它避免了M-M的缺点,实际上,这是一种具有容错和高可用性的系统。它的不同点在于其中一个服务只能进行只读操作。如图:

    4.4 级联复制架构 Master –Slaves - Slaves

    在有些应用场景中,可能读写压力差别比较大,读压力特别的大,一个Master可能需要上10台甚至更多的Slave才能够支撑注读的压力。这时候,Master就会比较吃力了,因为仅仅连上来的SlaveIO线程就比较多了,这样写的压力稍微大一点的时候,Master端因为复制就会消耗较多的资源,很容易造成复制的延时。

    遇到这种情况如何解决呢?这时候我们就可以利用MySQL可以在Slave端记录复制所产生变更的BinaryLog信息的功能,也就是打开—log-slave-update选项。然后,通过二级(或者是更多级别)复制来减少Master端因为复制所带来的压力。也就是说,我们首先通过少数几台MySQL从Master来进行复制,这几台机器我们姑且称之为第一级Slave集群,然后其他的Slave再从第一级Slave集群来进行复制。从第一级Slave进行复制的Slave,我称之为第二级Slave集群。如果有需要,我们可以继续往下增加更多层次的复制。这样,我们很容易就控制了每一台MySQL上面所附属Slave的数量。这种架构我称之为Master-Slaves-Slaves架构

    这种多层级联复制的架构,很容易就解决了Master端因为附属Slave太多而成为瓶颈的风险。下图展示了多层级联复制的Replication架构。

    当然,如果条件允许,我更倾向于建议大家通过拆分成多个Replication集群来解决

    上述瓶颈问题。毕竟Slave并没有减少写的量,所有Slave实际上仍然还是应用了所有的数据变更操作,没有减少任何写IO。相反,Slave越多,整个集群的写IO总量也就会越多,我们没有非常明显的感觉,仅仅只是因为分散到了多台机器上面,所以不是很容易表现出来。

    此外,增加复制的级联层次,同一个变更传到最底层的Slave所需要经过的MySQL也会更多,同样可能造成延时较长的风险。

    而如果我们通过分拆集群的方式来解决的话,可能就会要好很多了,当然,分拆集群也需要更复杂的技术和更复杂的应用系统架构。

     4.5、带从服务器的Master-Master结构(Master-Master with Slaves)

    这种结构的优点就是提供了冗余。在地理上分布的复制结构,它不存在单一节点故障问题,而且还可以将读密集型的请求放到slave上。

    级联复制在一定程度上面确实解决了Master因为所附属的Slave过多而成为瓶颈的问题,但是他并不能解决人工维护和出现异常需要切换后可能存在重新搭建Replication的问题。这样就很自然的引申出了DualMaster与级联复制结合的Replication架构,我称之为Master-Master-Slaves架构

    和Master-Slaves-Slaves架构相比,区别仅仅只是将第一级Slave集群换成了一台单独的Master,作为备用Master,然后再从这个备用的Master进行复制到一个Slave集群。

    这种DualMaster与级联复制结合的架构,最大的好处就是既可以避免主Master的写入操作不会受到Slave集群的复制所带来的影响,同时主Master需要切换的时候也基本上不会出现重搭Replication的情况。但是,这个架构也有一个弊端,那就是备用的Master有可能成为瓶颈,因为如果后面的Slave集群比较大的话,备用Master可能会因为过多的SlaveIO线程请求而成为瓶颈。当然,该备用Master不提供任何的读服务的时候,瓶颈出现的可能性并不是特别高,如果出现瓶颈,也可以在备用Master后面再次进行级联复制,架设多层Slave集群。当然,级联复制的级别越多,Slave集群可能出现的数据延时也会更为明显,所以考虑使用多层级联复制之前,也需要评估数据延时对应用系统的影响。

    5、复制的常见问题


    错误一:change master导致的:
         Last_IO_Error: error connecting to master 'repl1@IP:3306' - retry-time: 60  retries

    错误二:在没有解锁的情况下停止slave进程:
     mysql> stop slave;
    ERROR 1192 (HY000): Can't execute the given command because you have active locked tables or an active transaction

    错误三:在没有停止slave进程的情况下change master
    mysql> change master to master_host=‘IP', master_user='USER', master_password='PASSWD', master_log_file='mysql-bin.000001',master_log_pos=106;
    ERROR 1198 (HY000): This operation cannot be performed with a running slave; run STOP SLAVE first

    错误四:A B的server-id相同:
    Last_IO_Error: Fatal error: The slave I/O thread stops because master and slave have equal MySQL server ids; 
    these ids must be different for replication to work (or the --replicate-same-server-id option must be used on
    slave but this does not always make sense; please check the manual before using it). 
    查看server-id
    mysql> show variables like 'server_id'; 
    手动修改server-id
    mysql> set global server_id=2; #此处的数值和my.cnf里设置的一样就行 
    mysql> slave start;

    错误五:change master之后,查看slave的状态,发现slave_IO_running 仍为NO
    需要注意的是,上述几个错误做完操作之后要重启mysql进程,slave_IO_running 变为Yes

    错误六:MySQL主从同步异常Client requested master to start replication from position > file size

    字面理解:从库的读取binlog的位置大于主库当前binglog的值

    这一般是主库重启导致的问题,主库从参数sync_binlog默认为1000,即主库的数据是先缓存到1000条后统一fsync到磁盘的binlog文件中。

     当主库重启的时候,从库直接读取主库接着之前的位点重新拉binlog,但是主库由于没有fsync最后的binlog,所以会返回1236 的错误。
    正常建议配置sync_binlog=1 也就是每个事务都立即写入到binlog文件中。

    1、在从库检查slave状态:

    偏移量为4063315

    2、在主库检查mysql-bin.001574的偏移量位置

         mysqlbinlog mysql-bin.001574 >  ./mysql-bin.001574.bak

         tail -10 ./mysql-bin.001574.bak

    mysql-bin.001574文件最后几行 发现最后偏移量是4059237,从库偏移量的4063315远大主库的偏移量4059237,也就是参数sync_binlog=1000导致的。

    3、重新设置salve

    mysql> stop slave;

    mysql> change master to master_log_file='mysql-bin.001574' ,master_log_pos=4059237;

    mysql> start slave;

    错误8:数据同步异常情况

    第一种:在master上删除一条记录,而slave上找不到。

    Last_Error: Could not execute Delete_rows event on table market_edu.tl_player_task; Can't find record in 'tl_player_task', Error_code: 1032; handler error HA_ERR_KEY_NOT_FOUND; the event's master log mysql-bin.002094, end_log_pos 286434186

    解决方法:由于master要删除一条记录,而slave上找不到故报错,这种情况主上都将其删除了,那么从机可以直接跳过。

    可用命令:stop slave;   set global sql_slave_skip_counter=1;    start slave;

    第二种:主键重复。在slave已经有该记录,又在master上插入了同一条记录。

    Last_SQL_Error: Could not execute Write_rows event on table hcy.t1; 
    Duplicate entry '2' for key 'PRIMARY', 
    Error_code: 1062; 
    handler error HA_ERR_FOUND_DUPP_KEY; the event's master log mysql-bin.000006, end_log_pos 924

    解决方法:在slave删除重复的主键

    第三种:在master上更新一条记录,而slave上找不到,丢失了数据。

    Last_SQL_Error: Could not execute Update_rows event on table hcy.t1;
    Can't find record in 't1', 
    Error_code: 1032; 
    handler error HA_ERR_KEY_NOT_FOUND; the event's master log mysql-bin.000010, end_log_pos 263

    解决方法:把丢失的数据在slave上填补,然后跳过报错即可。

    insert into t1 values (2,'BTV');

    stop slave ;set global sql_slave_skip_counter=1;start slave;

    mysql 主从复制原理

    mysql主从复制 灵活
    • 一主一从
    • 主主复制
    • 一主多从---扩展系统读取的性能,因为读是在从库读取的;
    • 多主一从---5.7开始支持
    • 联级复制---

    用途及条件

     
    mysql主从复制用途
    • 实时灾备,用于故障切换
    • 读写分离,提供查询服务
    • 备份,避免影响业务
     
    主从部署必要条件:
    • 主库开启binlog日志(设置log-bin参数)
    • 主从server-id不同
    • 从库服务器能连通主库
     
    主从原理

    mysql主从复制原理
     
    从库生成两个线程,一个I/O线程,一个SQL线程;
     
    i/o线程去请求主库 的binlog,并将得到的binlog日志写到relay log(中继日志) 文件中;
    主库会生成一个 log dump 线程,用来给从库 i/o线程传binlog;
     
    SQL 线程,会读取relay log文件中的日志,并解析成具体操作,来实现主从的操作一致,而最终数据一致;
     
    问题及解决方法

     
    mysql主从复制存在的问题:
    • 主库宕机后,数据可能丢失
    • 从库只有一个sql Thread,主库写压力大,复制很可能延时
     
    解决方法:
    • 半同步复制---解决数据丢失的问题
    • 并行复制----解决从库复制延迟的问题
     
    半同步复制

     
    mysql semi-sync(半同步复制)
    半同步复制:
    • 5.5集成到mysql,以插件的形式存在,需要单独安装
    • 确保事务提交后binlog至少传输到一个从库
    • 不保证从库应用完这个事务的binlog
    • 性能有一定的降低,响应时间会更长
    • 如果主库的一个事务提交成功了,在推送到从库的过程当中,从库宕机了或网络故障,导致从库并没有接收到这个事务的Binlog,此时主库会等待一段时间(这个时间由rpl_semi_sync_master_timeout的毫秒数决定),如果这个时间过后还无法推送到从库,那MySQL会自动从半同步复制切换为异步复制,当从库恢复正常连接到主库后,主库又会自动切换回半同步复制
     
    主从复制--异步复制原理
    半同步复制原理:
     
    并行复制

     
    mysql并行复制
    • 社区版5.6中新增
    • 并行是指从库多线程apply binlog
    • 库级别并行应用binlog,同一个库数据更改还是串行的(5.7版并行复制基于事务组)
    设置
    set global slave_parallel_workers=10;
    设置sql线程数为10
     
     
    其他

     
    部分数据复制
    主库添加参数:
    binlog_do_db=db1
    binlog_ignore_db=db1
    binlog_ignore_db=db2
    或从库添加参数
    replicate_do_db=db1
    replicate_ignore_db=db1
    replicate_do_table=db1.t1
    replicate_wild_do_table=db%.%
    replicate_wild_ignore_table=db1.%
     
    联级复制(常用)
    A->B->C
    B中添加参数:
    log_slave_updates
    B将把A的binlog记录到自己的binlog日志中
    复制的监控:
    show  slave status G
    复制出错处理
    常见:1062(主键冲突),1032(记录不存在)
    解决:
    • 手动处理
    • 跳过复制错误:set global sql_slave_skip_counter=1
     
     
     
     
     
     

    MySQL主从复制

    原理:将主服务器的binlog日志复制到从服务器上执行一遍,达到主从数据的一致状态。

    过程:从库开启一个I/O线程,向主库请求Binlog日志。主节点开启一个binlog dump线程,检查自己的二进制日志,并发送给从节点;从库将接收到的数据保存到中继日志(Relay log)中,另外开启一个SQL线程,把Relay中的操作在自身机器上执行一遍

    优点:

    1. 作为备用数据库,并且不影响业务
    2. 可做读写分离,一般是一个写库,一个或多个读库,分布在不同的服务器上,充分发挥服务器和数据库的性能,但要保证数据的一致性

    扩展:

    1. SQL线程执行完Relay log中的事件后,会将当前的中继日志Relay log删除,避免它占用更多的磁盘空间
    2. 为保证从库重启后,仍然知道从哪里开始复制,从库默认会创建两个文件master.info和relay-log.info,分别记录了从库的IO线程当前读取主库binlog的进度和SQL线程应用Relay-log的进度。可通过show slave status G命令查看从库当前复制的状态

    主从复制时的日志格式:

    这里的日志格式就是指二进制日志的三种格式:基于语句statement的复制、基于行row的复制、基于语句和行(mix)的复制。其中基于row的复制方式更能保证主从库数据的一致性,但日志量较大,在设置时考虑磁盘的空间问题

    show variables like ‘%binlog%format%’;    #查看当前使用的binlog的格式

    set binlog_format = ‘row’;                #设置格式,这种方法只在当前session生效

    set global binlog_format = ‘row’;       #在全局下设置binlog格式,会影响所有的Session

    复制架构:

    1、一主多从架构

    在主库的请求压力非常大时,可通过配置一主多从复制架构实现读写分离,把大量对实时性要求不是很高的请求通过负载均衡分发到多个从库上去读取数据,降低主库的读取压力。而且在主库出现宕机时,可将一个从库切换为主库继续提供服务

    2、多级复制架构

    因为每个从库在主库上都会有一个独立的Binlog Dump线程来推送binlog日志,所以随着从库数量的增加,主库的IO压力和网络压力也会随之增加,这时,多级复制架构应运而生。

    多级复制架构只是在一主多从的基础上,再主库和各个从库之间增加了一个二级主库Master2,这个二级主库仅仅用来将一级主库推送给它的BInlog日志再推送给各个从库,以此来减轻一级主库的推送压力。

    但它的缺点就是Binlog日志要经过两次复制才能到达从库,增加了复制的延时。

    我们可以通过在二级从库上应用Blackhol存储引擎(黑洞引擎)来解决这一问题,降低多级复制的延时。

    “黑洞引擎”就是写入Blackhole表中数据并不会写到磁盘上,所以这个Blackhole表永远是个空表,对数据的插入/更新/删除操作仅在Binlog中记录,并复制到从库中去。

    3、双主复制/Dual Master架构

    双主复制架构适用于需要进行主从切换的场景

    在只有一个主库的架构下,当主库宕机后,将其中一个从库切换为主库继续提供服务。原来的主库就没有数据来源了,那么当这个新的主库接收到新的数据时,原来的主库却没有同步,因此他们的数据差异越来越大,那么原来的主库就无法成为主从复制环境中的一员了。当原来的主库恢复正常后,需要重新将其添加进复制环境中去。

    那为了避免重复添加主库的问题,双主复制应运而生。两个数据库互为主从,当主库宕机恢复后,由于它还是原来从库(现在主库)的从机,所以它还是会复制新的主库上的数据。那么无论主库的角色怎么切换,原来的主库都不会脱离复制环境。

    复制方式

    一、异步复制

    在异步复制中,主库执行完操作后,写入binlog日志后,就返回客户端,这一动作就结束了,并不会验证从库有没有收到,完不完整,所以这样可能会造成数据的不一致。

    说到底,复制过程中数据是否一致,主要取决于Binlog日志的安全性与完整性

    在MySQL中,有sync_binlog=n这一参数,他的值表示每进行n次事务提交,MySQL就将Binlog刷新到磁盘。如果这个值为1,就代表每提交一次事务(SQL),就将Binlog往磁盘刷新一次,这样一来,就算数据库宕机了,那么最多只能损失一次事务的数据。

    但是,一旦多个事务并发提交时,由于受sync_binlog的限制,MySQL只能按顺序来处理这些请求,另外,高频率的刷新binlog对IO的影响也很大,进一步影响了数据库的性能,所以,一般这个值都设为0或者其他值,在数据的安全性和高并发下的性能之间取得一个平衡。

    为了更加有效的保护Binlog的安全性和完整性,MySQL5 .5之后引入了半同步复制

    二、半同步复制

    在异步复制中,我们遇到的一个主要问题就是,在复制过程当中,主库不会去验证Binlog有没有成功复制到从库,那如果主库提交一个事务并写入Binlog中后,当从库还没有从主库得到Binlog时,主库宕机了或因磁盘损坏等故障导致该事务的Binlog丢失了,那从库就不会得到这个事务,也就造成了主从数据的不一致。

    而半同步复制,当主库每提交一个事务后,不会立即返回,而是等待其中一个从库接收到Binlog并成功写入Relay-log中才返回客户端,所以这样就保证了一个事务至少有两份日志,一份保存在主库的Binlog,另一份保存在其中一个从库的Relay-log中,从而保证了数据的安全性和一致性。

    另外,在半同步复制时,如果主库的一个事务提交成功了,在推送到从库的过程当中,从库宕机了或网络故障,导致从库并没有接收到这个事务的Binlog,此时主库会等待一段时间(这个时间由rpl_semi_sync_master_timeout的毫秒数决定),如果这个时间过后还无法推送到从库,那MySQL会自动从半同步复制切换为异步复制,当从库恢复正常连接到主库后,主库又会自动切换回半同步复制。

    半同步复制的“半”体现在,虽然主从库的Binlog是同步的,但主库不会等待从库执行完Relay-log后才返回,而是确认从库接收到Binlog,达到主从Binlog同步的目的后就返回了,所以从库的数据对于主库来说还是有延时的,这个延时就是从库执行Relay-log的时间。所以只能称为半同步。

    三、全同步复制(Fully synchronous replication)

    1、逻辑上

    指当主库执行完一个事务,所有的从库都执行了该事务才返回给客户端。因为需要等待所有从库执行完该事务才能返回,所以全同步复制的性能必然会收到严重的影响。

    2、技术上

    当主库提交事务之后,所有的从库节点必须收到、APPLY并且提交这些事务,然后主库线程才能继续做后续操作。但缺点是,主库完成一个事务的时间会被拉长,性能降低。

    深度探索MySQL主从复制原理

    启迪云计算-开发工程师 邸小丽

    概要
    MySQL Replication (MySQL 主从复制) 是什么?为什么要主从复制以及它的实现原理是什么?

    • MySQL 主从复制概念

    MySQL 主从复制是指数据可以从一个MySQL数据库服务器主节点复制到一个或多个从节点。MySQL 默认采用异步复制方式,这样从节点不用一直访问主服务器来更新自己的数据,数据的更新可以在远程连接上进行,从节点可以复制主数据库中的所有数据库或者特定的数据库,或者特定的表。

    • MySQL 主从复制主要用途

    l 读写分离
    在开发工作中,有时候会遇见某个sql 语句需要锁表,导致暂时不能使用读的服务,这样就会影响现有业务,使用主从复制,让主库负责写,从库负责读,这样,即使主库出现了锁表的情景,通过读从库也可以保证业务的正常运作。
    l 数据实时备份,当系统中某个节点发生故障时,可以方便的故障切换
    l 高可用HA
    l 架构扩展
    随着系统中业务访问量的增大,如果是单机部署数据库,就会导致I/O访问频率过高。有了主从复制,增加多个数据存储节点,将负载分布在多个从节点上,降低单机磁盘I/O访问的频率,提高单个机器的I/O性能。

    • MySQL 主从形式

    一主一从


    一主多从,提高系统的读性能

    一主一从和一主多从是最常见的主从架构,实施起来简单并且有效,不仅可以实现HA,而且还能读写分离,进而提升集群的并发能力。

    多主一从 (从5.7开始支持)

    多主一从可以将多个mysql数据库备份到一台存储性能比较好的服务器上。

    双主复制

    双主复制,也就是互做主从复制,每个master既是master,又是另外一台服务器的slave。这样任何一方所做的变更,都会通过复制应用到另外一方的数据库中。

    级联复制

    级联复制模式下,部分slave的数据同步不连接主节点,而是连接从节点。因为如果主节点有太多的从节点,就会损耗一部分性能用于replication,那么我们可以让3~5个从节点连接主节点,其它从节点作为二级或者三级与从节点连接,这样不仅可以缓解主节点的压力,并且对数据一致性没有负面影响。

    • MySQL 主从复制原理

    MySQL主从复制涉及到三个线程,一个运行在主节点(log dump thread),其余两个(I/O thread, SQL thread)运行在从节点,如下图所示:


    l 主节点 binary log dump 线程
    当从节点连接主节点时,主节点会创建一个log dump 线程,用于发送bin-log的内容。在读取bin-log中的操作时,此线程会对主节点上的bin-log加锁,当读取完成,甚至在发动给从节点之前,锁会被释放。


    l 从节点I/O线程
    当从节点上执行`start slave`命令之后,从节点会创建一个I/O线程用来连接主节点,请求主库中更新的bin-log。I/O线程接收到主节点binlog dump 进程发来的更新之后,保存在本地relay-log中。


    l 从节点SQL线程
    SQL线程负责读取relay log中的内容,解析成具体的操作并执行,最终保证主从数据的一致性。

    对于每一个主从连接,都需要三个进程来完成。当主节点有多个从节点时,主节点会为每一个当前连接的从节点建一个binary log dump 进程,而每个从节点都有自己的I/O进程,SQL进程。从节点用两个线程将从主库拉取更新和执行分成独立的任务,这样在执行同步数据任务的时候,不会降低读操作的性能。比如,如果从节点没有运行,此时I/O进程可以很快从主节点获取更新,尽管SQL进程还没有执行。如果在SQL进程执行之前从节点服务停止,至少I/O进程已经从主节点拉取到了最新的变更并且保存在本地relay日志中,当服务再次起来之后,就可以完成数据的同步。

    要实施复制,首先必须打开Master 端的binary log(bin-log)功能,否则无法实现。
    因为整个复制过程实际上就是Slave 从Master 端获取该日志然后再在自己身上完全顺序的执行日志中所记录的各种操作。如下图所示:

    复制的基本过程如下:

    • 从节点上的I/O 进程连接主节点,并请求从指定日志文件的指定位置(或者从最开始的日志)之后的日志内容;
    • 主节点接收到来自从节点的I/O请求后,通过负责复制的I/O进程根据请求信息读取指定日志指定位置之后的日志信息,返回给从节点。返回信息中除了日志所包含的信息之外,还包括本次返回的信息的bin-log file 的以及bin-log position;从节点的I/O进程接收到内容后,将接收到的日志内容更新到本机的relay log中,并将读取到的binary log文件名和位置保存到master-info 文件中,以便在下一次读取的时候能够清楚的告诉Master“我需要从某个bin-log 的哪个位置开始往后的日志内容,请发给我”;
    • Slave 的 SQL线程检测到relay-log 中新增加了内容后,会将relay-log的内容解析成在祝节点上实际执行过的操作,并在本数据库中执行。

     

    • MySQL 主从复制模式

    MySQL 主从复制默认是异步的模式。MySQL增删改操作会全部记录在binary log中,当slave节点连接master时,会主动从master处获取最新的bin log文件。并把bin log中的sql relay。
    l 异步模式(mysql async-mode)
    异步模式如下图所示,这种模式下,主节点不会主动push bin log到从节点,这样有可能导致failover的情况下,也许从节点没有即时地将最新的bin log同步到本地。


    l 半同步模式(mysql semi-sync)
    这种模式下主节点只需要接收到其中一台从节点的返回信息,就会commit;否则需要等待直到超时时间然后切换成异步模式再提交;这样做的目的可以使主从数据库的数据延迟缩小,可以提高数据安全性,确保了事务提交后,binlog至少传输到了一个从节点上,不能保证从节点将此事务更新到db中。性能上会有一定的降低,响应时间会变长。如下图所示:


    半同步模式不是mysql内置的,从mysql 5.5开始集成,需要master 和slave 安装插件开启半同步模式。


    l 全同步模式
    全同步模式是指主节点和从节点全部执行了commit并确认才会向客户端返回成功。

    • binlog记录格式

    MySQL 主从复制有三种方式:基于SQL语句的复制(statement-based replication,SBR),基于行的复制(row-based replication,RBR),混合模式复制(mixed-based replication,MBR)。对应的binlog文件的格式也有三种:STATEMENT,ROW,MIXED。

    l Statement-base Replication (SBR)就是记录sql语句在bin log中,Mysql 5.1.4 及之前的版本都是使用的这种复制格式。优点是只需要记录会修改数据的sql语句到binlog中,减少了binlog日质量,节约I/O,提高性能。缺点是在某些情况下,会导致主从节点中数据不一致(比如sleep(),now()等)。


    l Row-based Relication(RBR)是mysql master将SQL语句分解为基于Row更改的语句并记录在bin log中,也就是只记录哪条数据被修改了,修改成什么样。优点是不会出现某些特定情况下的存储过程、或者函数、或者trigger的调用或者触发无法被正确复制的问题。缺点是会产生大量的日志,尤其是修改table的时候会让日志暴增,同时增加bin log同步时间。也不能通过bin log解析获取执行过的sql语句,只能看到发生的data变更。


    l Mixed-format Replication(MBR),MySQL NDB cluster 7.3 和7.4 使用的MBR。是以上两种模式的混合,对于一般的复制使用STATEMENT模式保存到binlog,对于STATEMENT模式无法复制的操作则使用ROW模式来保存,MySQL会根据执行的SQL语句选择日志保存方式。

    • GTID复制模式

    @ 在传统的复制里面,当发生故障,需要主从切换,需要找到binlog和pos点,然后将主节点指向新的主节点,相对来说比较麻烦,也容易出错。在MySQL 5.6里面,不用再找binlog和pos点,我们只需要知道主节点的ip,端口,以及账号密码就行,因为复制是自动的,MySQL会通过内部机制GTID自动找点同步。
    @ 多线程复制(基于库),在MySQL 5.6以前的版本,slave的复制是单线程的。一个事件一个事件的读取应用。而master是并发写入的,所以延时是避免不了的。唯一有效的方法是把多个库放在多台slave,这样又有点浪费服务器。在MySQL 5.6里面,我们可以把多个表放在多个库,这样就可以使用多线程复制。

    • 基于GTID复制实现的工作原理
    • 主节点更新数据时,会在事务前产生GTID,一起记录到binlog日志中。
    • 从节点的I/O线程将变更的bin log,写入到本地的relay log中。
    • SQL线程从relay log中获取GTID,然后对比本地binlog是否有记录(所以MySQL从节点必须要开启binary log)。
    • 如果有记录,说明该GTID的事务已经执行,从节点会忽略。
    • 如果没有记录,从节点就会从relay log中执行该GTID的事务,并记录到bin log。
    • 在解析过程中会判断是否有主键,如果没有就用二级索引,如果有就用全部扫描。

    GTID复制原理:

    基于GTID的复制是MySQL 5.6后新增的复制方式.
    GTID (global transaction identifier) 即全局事务ID, 保证了在每个在主库上提交的事务在集群中有一个唯一的ID.
    在原来基于日志的复制中, 从库需要告知主库要从哪个偏移量进行增量同步, 如果指定错误会造成数据的遗漏, 从而造成数据的不一致.
    而基于GTID的复制中, 从库会告知主库已经执行的事务的GTID的值, 然后主库会将所有未执行的事务的GTID的列表返回给从库. 并且可以保证同一个事务只在指定的从库执行一次.

    GTID是由server_uuid和事物id组成,格式为:GTID=server_uuid:transaction_id。server_uuid是在数据库启动过程中自动生成,每台机器的server-uuid不一样。uuid存放在数据目录的auto.conf文件中,而transaction_id就是事务提交时系统顺序分配的一个不会重复的序列号。

    GTID的好处:

    (1)GTID使用master_auto_position=1代替了binlog和position号的主从复制搭建方式,相比binlog和position方式更容易搭建主从复制。

    (2)GTID方便实现主从之间的failover,不用一步一步的去查找position和binlog文件。

     

    • 总结

    Mysql 主从复制是mysql 高可用,高性能的基础,有了这个基础,mysql 的部署会变得简单、灵活并且具有多样性,从而可以根据不同的业务场景做出灵活的调整。

     

    MySQL主从复制数据一致性校验和修复方法及自动化实现

    1.    引言

    “MySQL主从复制”技术在互联网行业常见高可用架构中应用非常广泛,例如常见的一主一从复制架构、keepalived+MySQL双主(主从)复制架构、MHA+一主两从复制架构等等都应用了MySQL主从复制技术。但因主从复制是基于binlog的逻辑复制,难免出现复制数据不一致的风险,这个风险不但会引起用户数据访问前后不一致的风险,而且会导致后续复制出现1032、1062错误进而引起复制架构停滞的隐患,为了及时发现并解决这个问题,我们需要定期或不定期地开展主从复制数据一致性的校验和修复工作,那么如何实现这项工作呢?又如何实现这项工作的自动化呢?我们来探讨这些问题。

    2.    数据一致性校验和修复方法

    为了实现主从复制数据一致性校验和修复,我们首先推荐两个热门工具,分别是percona公司的 pt-table-checksum和pt-table-sync,前者用来实现主从复制数据一致性的校验,后者实现数据修复,将数据修复到一致。

    2.1工作原理

            pt-table-checksum通过SQL在主库执行数据块的校验,再将相同的语句传送到从库,并在从库上计算数据块的校验,最后将主从库相同块的校验值进行对比,辨别主从数据是否不一致。

    pt-table-sync用来修复主从复制数据的不一致,使得它们修复到最终一致,也可以实现多个实例或者是应用双写或多写的多个不相关的数据库实例修复到一致。同时它还内部集成了pt-table-checksum的校验功能,可以一边校验一边修复,也可以基于pt-table-checksum的计算结果来进行修复

    主从数据修复

    用pt-table-checksum工具确定确实存在数据不一致的情况下开始修复数据,数据修复使用工具pt-table-sync,内带校验功能,但前提是修复的表必须要有主键,这个工具也要在主库上执行。

    语句量大的情况下将修复的语句导入到sql文件中,再直接导入执行

    在主库用pt-table-sync打印出修复不一致数据的SQL,后将修复语句在从库执行。

    2.2 值得注意的点

    (1)校验修复工作每月定期开展;

    (2)主从复制架构在割接操作前后均需执行数据校验和修复工作;

    (3)主从复制出现故障后要开展数据校验和修复工作;

    (4)校验修复需在业务低谷期进行,CPU利用率超过60%时不建议做数据校验和修复;

    (5)校验和修复必须在主库进行;

    (6)数据库的表要有主键,否则校验效率极差,并且修复不成功。

    3.数据一致性校验和修复的自动化实现

    理解上述方法后,我们可以顺利完成主从复制数据一致性的校验和修复工作,但是这项工作在MySQL主从复制架构维护中开展频率较高,包括定期和各种不定期的情况,每次都手工开展耗时耗力,并且容易出现人为错误及隐患,因此,我们考虑将这项工作通过脚本实现自动化。

    自动化实现

    部署自动化脚本和定时任务

    理解数据一致性校验和修复的全部原理和详细步骤,将其转化为多个自动化脚本,分别部署在主从库上,每月定期执行可通过在主库制定crontab定时任务调用主从库脚本实现,不定期执行可通过手动调用主从库部署的自动化脚本来实现。

     
     
  • 相关阅读:
    python、Java、大数据和Android的薪资如何?
    php最新版本配置mysqli
    使用Python3爬虫抓取网页来下载小说
    pygame事件之——控制物体(飞机)的移动
    用javascript做别踩白块游戏2
    用javascript做别踩白块游戏1
    select、poll、epoll之间的区别总结(IO同、异步、(非)阻塞)----内核态、用户态
    元类
    python大神-javascript知识
    python大神-html知识
  • 原文地址:https://www.cnblogs.com/xuwc/p/14004232.html
Copyright © 2011-2022 走看看