zoukankan      html  css  js  c++  java
  • 线性规划之---最大矩阵和

    转载自:http://blog.csdn.net/beiyeqingteng/article/details/7056687

    前言:


    问题:

    求一个M*N的矩阵的最大子矩阵和。
    比如在如下这个矩阵中:
    0 -2 -7 0
    9 2 -6 2
    -4 1 -4 1
    -1 8 0 -2
    拥有最大和的子矩阵为:
    9 2
    -4 1
    -1 8
    其和为15。

    思路:

    首先,这个子矩阵可以是任意大小的,而且起始点也可以在任何地方,所以,要把最大子矩阵找出来,我们要考虑多种情况。

    假定原始矩阵的行数为M,那么对于子矩阵,它的行数可以是1到M的任何一个数,而且,对于一个K行(K < M)的子矩阵,它的第一行可以是原始矩阵的第1行到 M - K + 1 的任意一行。

    例子:

    对于上面的矩阵,如果子矩阵的行数是2,那么它可以是下面几个矩阵的子矩阵:

    0 -2 -7 0
    9 2 -6 2

    或者

    9 2 -6 2
    -4 1 -4 1

    或者

    -4 1 -4 1
    -1 8 0 -2

    在每一种情况里(我们这里有三种),我们还要找出一个最大的子矩阵,当然,这只是一种情况的最大子矩阵(局部最大),不一定是global最大。但是,如果我们知道每一种情况的最大,要找出global最大,那就小菜一碟儿了。

    在讲在一个特殊情况下求最大子矩阵之前,先讲一个事实:

    假设这个最大子矩阵的维数是一维,要找出最大子矩阵, 原理与求“最大子段和问题” 是一样的。最大子段和问题的递推公式是 b[j]=max{b[j-1]+a[j], a[j]},b[j] 指的是从0开始到j的最大子段和。

    例子:

    假设原始矩阵为:[9, 2, -6, 2], 那么b[] = {9, 11, 5, 7}, 那么最大字段和为11, 如果找最大子矩阵的话,那么这个子矩阵是 [9, 2]

    求最大子段和的代码如下:

    1. public int maxSubsequence(int[] array) {
    2. if (array.length == 0) {
    3. return 0;
    4. }
    5. int max = Integer.MIN_VALUE;
    6. int[] maxSub = new int[array.length];
    7. maxSub[0] = array[0];
    8.  
    9. for (int i = 1; i < array.length; i++) {
    10. maxSub[i] = (maxSub[i-1] > 0) ? (maxSub[i-1] + array[i]) : array[i];
    11. if (max < maxSub[i]) {
    12. max = maxSub[i];
    13. }
    14. }
    15. return max;
    16. }

    但是,原始矩阵可以是二维的。假设原始矩阵是一个3 * n 的矩阵,那么它的子矩阵可以是 1 * k, 2 * k, 3 * k,(1 <= k <= n)。 如果是1*K,这里有3种情况:子矩阵在第一行,子矩阵在第二行,子矩阵在第三行。如果是 2 * k,这里有两种情况,子矩阵在第一、二行,子矩阵在第二、三行。如果是3 * k,只有一种情况。

    为了能够找出最大的子矩阵,我们需要考虑所有的情况。假设这个子矩阵是 2 *k, 也就是说它只有两行,要找出最大子矩阵,我们要从左到右不断的遍历才能找出在这种情况下的最大子矩阵。如果我们把这两行上下相加,情况就和求“最大子段和问题” 又是一样的了。

    为了找出在原始矩阵里的最大子矩阵,我们要遍历所有的子矩阵的可能情况,也就是说,我们要考虑这个子矩阵有可能只有1行,2行,。。。到n行。而在每一种情况下,我们都要把它所对应的矩阵部分上下相加才求最大子矩阵(局部)。

    比如,假设子矩阵是一个3*k的矩阵,而且,它的一行是原始矩阵的第二行,那么,我们就要在

    9 2 -6 2
    -4 1 -4 1
    -1 8 0 -2

    里找最大的子矩阵。

    如果把它上下相加,我们就变成了 4, 11, -10,1, 从这个数列里可以看出,在这种情况下,最大子矩阵是一个3*2的矩阵,最大和是15.

    为了能够在原始矩阵里很快得到从 i 行到 j 行 的上下值之和,我们这里用到了一个辅助矩阵,它是原始矩阵从上到下加下来的。

    假设原始矩阵是matrix, 它每一层上下相加后得到的矩阵是total,那么我们可以通过如下代码实现:
    1. int[][] total = matrix;
    2. for (int i = 1; i < matrix[0].length; i++) {
    3. for (int j = 0; j < matrix.length; j++) {
    4. total[i][j] += total[i-1][j];
    5. }
    6. }

    如果我们要求第 i 行到第 j 行之间上下值的和,我们可以通过total[j][k] - total[i-1][k] 得到, k 的范围从1 到 matrix[0].length - 1。

    有了这些知识点,我们只需要在所有的情况下,把它们所对应的局部最大子矩阵进行比较,就可以得到全局最大的子矩阵。代码如下:
    1. public int subMaxMatrix(int[][] matrix) {
    2.  
    3. int[][] total = matrix;
    4. for (int i = 1; i < matrix[0].length; i++) {
    5. for (int j = 0; j < matrix.length; j++) {
    6. total[i][j] += total[i-1][j];
    7. }
    8. }
    9.  
    10. int maximum = Integer.MIN_VALUE;
    11. for (int i = 0; i < matrix.length; i++) {
    12. for (int j = i; j < matrix.length; j++) {
    13. //result 保存的是从 i 行 到第 j 行 所对应的矩阵上下值的和
    14. int[] result = new int[matrix[0].length];
    15. for (int f = 0; f < matrix[0].length; f++) {
    16. if (i == 0) {
    17. result[f] = total[j][f];
    18. } else {
    19. result[f] = total[j][f] - total[i - 1][f];
    20. }
    21. }
    22. int maximal = maxSubsequence(result);
    23.  
    24. if (maximal > maximum) {
    25. maximum = maximal;
    26. }
    27. }
    28. }
    29.  
    30. return maximum;
    31. }


  • 相关阅读:
    字符串转json
    如何解决写好的脚本上传Linux执行出错?
    Windows查看端口并开放端口
    解决mysql遇到非root权限无法登录mysql数据库的问题
    raid配置
    Python实现根据时间移动/复制一个文件夹的文件--模拟大并发数据
    ffmpeg基本命令学习
    pytest学习--pytest的skip和skipif
    多项式全家桶学习笔记(How EI's poly works)
    具体数学难度评分
  • 原文地址:https://www.cnblogs.com/xuxinstyle/p/9568320.html
Copyright © 2011-2022 走看看