zoukankan      html  css  js  c++  java
  • synchronized与Lock的区别与使用

    版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u012403290/article/details/64910926

    引言:

    昨天在学习别人分享的面试经验时,看到Lock的使用。想起自己在上次面试也遇到了synchronized与Lock的区别与使用。于是,我整理了两者的区别和使用情况,同时,对synchronized的使用过程一些常见问题的总结,最后是参照源码和说明文档,对Lock的使用写了几个简单的Demo。请大家批评指正。

    技术点:

    1、线程与进程:

    在开始之前先把进程与线程进行区分一下,一个程序最少需要一个进程,而一个进程最少需要一个线程。关系是线程–>进程–>程序的大致组成结构。所以线程是程序执行流的最小单位,而进程是系统进行资源分配和调度的一个独立单位。以下我们所有讨论的都是建立在线程基础之上。

    2、Thread的几个重要方法:

    我们先了解一下Thread的几个重要方法。a、start()方法,调用该方法开始执行该线程;b、stop()方法,调用该方法强制结束该线程执行;c、join方法,调用该方法等待该线程结束。d、sleep()方法,调用该方法该线程进入等待。e、run()方法,调用该方法直接执行线程的run()方法,但是线程调用start()方法时也会运行run()方法,区别就是一个是由线程调度运行run()方法,一个是直接调用了线程中的run()方法!!

    看到这里,可能有些人就会问啦,那wait()和notify()呢?要注意,其实wait()与notify()方法是Object的方法,不是Thread的方法!!同时,wait()与notify()会配合使用,分别表示线程挂起和线程恢复。

    这里还有一个很常见的问题,顺带提一下:wait()与sleep()的区别,简单来说wait()会释放对象锁而sleep()不会释放对象锁。这些问题有很多的资料,不再赘述。

    3、线程状态:

    这里写图片描述

    线程总共有5大状态,通过上面第二个知识点的介绍,理解起来就简单了。

    • 新建状态:新建线程对象,并没有调用start()方法之前

    • 就绪状态:调用start()方法之后线程就进入就绪状态,但是并不是说只要调用start()方法线程就马上变为当前线程,在变为当前线程之前都是为就绪状态。值得一提的是,线程在睡眠和挂起中恢复的时候也会进入就绪状态哦。

    • 运行状态:线程被设置为当前线程,开始执行run()方法。就是线程进入运行状态

    • 阻塞状态:线程被暂停,比如说调用sleep()方法后线程就进入阻塞状态

    • 死亡状态:线程执行结束

    4、锁类型

    • 可重入锁:在执行对象中所有同步方法不用再次获得锁

    • 可中断锁:在等待获取锁过程中可中断

    • 公平锁: 按等待获取锁的线程的等待时间进行获取,等待时间长的具有优先获取锁权利

    • 读写锁:对资源读取和写入的时候拆分为2部分处理,读的时候可以多线程一起读,写的时候必须同步地写


    synchronized与Lock的区别

    1、我把两者的区别分类到了一个表中,方便大家对比:

    类别synchronizedLock
    存在层次 Java的关键字,在jvm层面上 是一个类
    锁的释放 1、以获取锁的线程执行完同步代码,释放锁 2、线程执行发生异常,jvm会让线程释放锁 在finally中必须释放锁,不然容易造成线程死锁
    锁的获取 假设A线程获得锁,B线程等待。如果A线程阻塞,B线程会一直等待 分情况而定,Lock有多个锁获取的方式,具体下面会说道,大致就是可以尝试获得锁,线程可以不用一直等待
    锁状态 无法判断 可以判断
    锁类型 可重入 不可中断 非公平 可重入 可判断 可公平(两者皆可)
    性能 少量同步 大量同步

    或许,看到这里还对LOCK所知甚少,那么接下来,我们进入LOCK的深入学习。

    Lock详细介绍与Demo

    以下是Lock接口的源码,笔者修剪之后的结果:

    public interface Lock {
    
        /**
         * Acquires the lock.
         */
        void lock();
    
        /**
         * Acquires the lock unless the current thread is
         * {@linkplain Thread#interrupt interrupted}.
         */
        void lockInterruptibly() throws InterruptedException;
    
        /**
         * Acquires the lock only if it is free at the time of invocation.
         */
        boolean tryLock();
    
        /**
         * Acquires the lock if it is free within the given waiting time and the
         * current thread has not been {@linkplain Thread#interrupt interrupted}.
         */
        boolean tryLock(long time, TimeUnit unit) throws InterruptedException;
    
        /**
         * Releases the lock.
         */
        void unlock();
    
    }
    从Lock接口中我们可以看到主要有个方法,这些方法的功能从注释中可以看出:
    
    • 1
    • lock():获取锁,如果锁被暂用则一直等待

    • unlock():释放锁

    • tryLock(): 注意返回类型是boolean,如果获取锁的时候锁被占用就返回false,否则返回true

    • tryLock(long time, TimeUnit unit):比起tryLock()就是给了一个时间期限,保证等待参数时间

    • lockInterruptibly():用该锁的获得方式,如果线程在获取锁的阶段进入了等待,那么可以中断此线程,先去做别的事

    通过 以上的解释,大致可以解释在上个部分中“锁类型(lockInterruptibly())”,“锁状态(tryLock())”等问题,还有就是前面子所获取的过程我所写的“大致就是可以尝试获得锁,线程可以不会一直等待”用了“可以”的原因。

    下面是Lock一般使用的例子,注意ReentrantLock是Lock接口的实现。
    
    • 1

    lock():

    
    package com.brickworkers;
    
    import java.util.concurrent.locks.Lock;
    import java.util.concurrent.locks.ReentrantLock;
    
    public class LockTest {
        private Lock lock = new ReentrantLock();
    
        //需要参与同步的方法
        private void method(Thread thread){
            lock.lock();
            try {
                System.out.println("线程名"+thread.getName() + "获得了锁");
            }catch(Exception e){
                e.printStackTrace();
            } finally {
                System.out.println("线程名"+thread.getName() + "释放了锁");
                lock.unlock();
            }
        }
    
        public static void main(String[] args) {
            LockTest lockTest = new LockTest();
    
            //线程1
            Thread t1 = new Thread(new Runnable() {
    
                @Override
                public void run() {
                    lockTest.method(Thread.currentThread());
                }
            }, "t1");
    
            Thread t2 = new Thread(new Runnable() {
    
                @Override
                public void run() {
                    lockTest.method(Thread.currentThread());
                }
            }, "t2");
    
            t1.start();
            t2.start();
        }
    }
    //执行情况:线程名t1获得了锁
    //         线程名t1释放了锁
    //         线程名t2获得了锁
    //         线程名t2释放了锁

    tryLock():

    package com.brickworkers;
    
    import java.util.concurrent.locks.Lock;
    import java.util.concurrent.locks.ReentrantLock;
    
    public class LockTest {
        private Lock lock = new ReentrantLock();
    
        //需要参与同步的方法
        private void method(Thread thread){
    /*      lock.lock();
            try {
                System.out.println("线程名"+thread.getName() + "获得了锁");
            }catch(Exception e){
                e.printStackTrace();
            } finally {
                System.out.println("线程名"+thread.getName() + "释放了锁");
                lock.unlock();
            }*/
    
    
            if(lock.tryLock()){
                try {
                    System.out.println("线程名"+thread.getName() + "获得了锁");
                }catch(Exception e){
                    e.printStackTrace();
                } finally {
                    System.out.println("线程名"+thread.getName() + "释放了锁");
                    lock.unlock();
                }
            }else{
                System.out.println("我是"+Thread.currentThread().getName()+"有人占着锁,我就不要啦");
            }
        }
    
        public static void main(String[] args) {
            LockTest lockTest = new LockTest();
    
            //线程1
            Thread t1 = new Thread(new Runnable() {
    
                @Override
                public void run() {
                    lockTest.method(Thread.currentThread());
                }
            }, "t1");
    
            Thread t2 = new Thread(new Runnable() {
    
                @Override
                public void run() {
                    lockTest.method(Thread.currentThread());
                }
            }, "t2");
    
            t1.start();
            t2.start();
        }
    }
    
    //执行结果: 线程名t2获得了锁
    //         我是t1有人占着锁,我就不要啦
    //         线程名t2释放了锁
    

    看到这里相信大家也都会使用如何使用Lock了吧,关于tryLock(long time, TimeUnit unit)和lockInterruptibly()不再赘述。前者主要存在一个等待时间,在测试代码中写入一个等待时间,后者主要是等待中断,会抛出一个中断异常,常用度不高,喜欢探究可以自己深入研究。

    前面比较重提到“公平锁”,在这里可以提一下ReentrantLock对于平衡锁的定义,在源码中有这么两段:
    

     

    
     /**
         * Sync object for non-fair locks
         */
        static final class NonfairSync extends Sync {
            private static final long serialVersionUID = 7316153563782823691L;
    
            /**
             * Performs lock.  Try immediate barge, backing up to normal
             * acquire on failure.
             */
            final void lock() {
                if (compareAndSetState(0, 1))
                    setExclusiveOwnerThread(Thread.currentThread());
                else
                    acquire(1);
            }
    
            protected final boolean tryAcquire(int acquires) {
                return nonfairTryAcquire(acquires);
            }
        }
    
        /**
         * Sync object for fair locks
         */
        static final class FairSync extends Sync {
            private static final long serialVersionUID = -3000897897090466540L;
    
            final void lock() {
                acquire(1);
            }
    
            /**
             * Fair version of tryAcquire.  Don't grant access unless
             * recursive call or no waiters or is first.
             */
            protected final boolean tryAcquire(int acquires) {
                final Thread current = Thread.currentThread();
                int c = getState();
                if (c == 0) {
                    if (!hasQueuedPredecessors() &&
                        compareAndSetState(0, acquires)) {
                        setExclusiveOwnerThread(current);
                        return true;
                    }
                }
                else if (current == getExclusiveOwnerThread()) {
                    int nextc = c + acquires;
                    if (nextc < 0)
                        throw new Error("Maximum lock count exceeded");
                    setState(nextc);
                    return true;
                }
                return false;
            }
        }

    从以上源码可以看出在Lock中可以自己控制锁是否公平,而且,默认的是非公平锁,以下是ReentrantLock的构造函数:

       public ReentrantLock() {
            sync = new NonfairSync();//默认非公平锁
        }
     
     2018/10/1更新

    今天看了并发实践这本书的ReentantLock这章,感觉对ReentantLock还是不够熟悉,有许多疑问,所有在网上找了很多文章看了一下,总体说的不够详细,重点和焦点问题没有谈到,但这篇文章相当不错,说的很全面,主要的重点都说到了,所有在这里转载了这篇文章,注意红色字体。

      在上一篇文章中我们讲到了如何使用关键字synchronized来实现同步访问。本文我们继续来探讨这个问题,从Java 5之后,在java.util.concurrent.locks包下提供了另外一种方式来实现同步访问,那就是Lock。

      也许有朋友会问,既然都可以通过synchronized来实现同步访问了,那么为什么还需要提供Lock?这个问题将在下面进行阐述。本文先从synchronized的缺陷讲起,然后再讲述java.util.concurrent.locks包下常用的有哪些类和接口,最后讨论以下一些关于锁的概念方面的东西

      以下是本文目录大纲:

      一.synchronized的缺陷

      二.java.util.concurrent.locks包下常用的类

      三.锁的相关概念介绍

      若有不正之处请多多谅解,并欢迎批评指正。

      请尊重作者劳动成果,转载请标明原文链接:

       http://www.cnblogs.com/dolphin0520/p/3923167.html

    一.synchronized的缺陷

      synchronized是java中的一个关键字,也就是说是Java语言内置的特性。那么为什么会出现Lock呢?

      在上面一篇文章中,我们了解到如果一个代码块被synchronized修饰了,当一个线程获取了对应的锁,并执行该代码块时,其他线程便只能一直等待,等待获取锁的线程释放锁,而这里获取锁的线程释放锁只会有两种情况:

      1)获取锁的线程执行完了该代码块,然后线程释放对锁的占有;

      2)线程执行发生异常,此时JVM会让线程自动释放锁。

      那么如果这个获取锁的线程由于要等待IO或者其他原因(比如调用sleep方法)被阻塞了,但是又没有释放锁,其他线程便只能干巴巴地等待,试想一下,这多么影响程序执行效率。

      因此就需要有一种机制可以不让等待的线程一直无期限地等待下去(比如只等待一定的时间或者能够响应中断),通过Lock就可以办到。

      再举个例子:当有多个线程读写文件时,读操作和写操作会发生冲突现象,写操作和写操作会发生冲突现象,但是读操作和读操作不会发生冲突现象。

      但是采用synchronized关键字来实现同步的话,就会导致一个问题:

      如果多个线程都只是进行读操作,所以当一个线程在进行读操作时,其他线程只能等待无法进行读操作。

      因此就需要一种机制来使得多个线程都只是进行读操作时,线程之间不会发生冲突,通过Lock就可以办到。

      另外,通过Lock可以知道线程有没有成功获取到锁。这个是synchronized无法办到的。

      总结一下,也就是说Lock提供了比synchronized更多的功能。但是要注意以下几点:

      1)Lock不是Java语言内置的,synchronized是Java语言的关键字,因此是内置特性。Lock是一个类,通过这个类可以实现同步访问;

      2)Lock和synchronized有一点非常大的不同,采用synchronized不需要用户去手动释放锁,当synchronized方法或者synchronized代码块执行完之后,系统会自动让线程释放对锁的占用;而Lock则必须要用户去手动释放锁,如果没有主动释放锁,就有可能导致出现死锁现象。

    二.java.util.concurrent.locks包下常用的类

      下面我们就来探讨一下java.util.concurrent.locks包中常用的类和接口。

      1.Lock

      首先要说明的就是Lock,通过查看Lock的源码可知,Lock是一个接口:

    1
    2
    3
    4
    5
    6
    7
    8
    public interface Lock {
        void lock();
        void lockInterruptibly() throws InterruptedException;
        boolean tryLock();
        boolean tryLock(long time, TimeUnit unit) throws InterruptedException;
        void unlock();
        Condition newCondition();
    }

       下面来逐个讲述Lock接口中每个方法的使用,lock()、tryLock()、tryLock(long time, TimeUnit unit)和lockInterruptibly()是用来获取锁的。unLock()方法是用来释放锁的。newCondition()这个方法暂且不在此讲述,会在后面的线程协作一文中讲述。

      在Lock中声明了四个方法来获取锁,那么这四个方法有何区别呢?

      首先lock()方法是平常使用得最多的一个方法,就是用来获取锁。如果锁已被其他线程获取,则进行等待。

      由于在前面讲到如果采用Lock,必须主动去释放锁,并且在发生异常时,不会自动释放锁。因此一般来说,使用Lock必须在try{}catch{}块中进行,并且将释放锁的操作放在finally块中进行,以保证锁一定被被释放,防止死锁的发生。通常使用Lock来进行同步的话,是以下面这种形式去使用的:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    Lock lock = ...;
    lock.lock();
    try{
        //处理任务
    }catch(Exception ex){
         
    }finally{
        lock.unlock();   //释放锁
    }

      tryLock()方法是有返回值的,它表示用来尝试获取锁,如果获取成功,则返回true,如果获取失败(即锁已被其他线程获取),则返回false,也就说这个方法无论如何都会立即返回。在拿不到锁时不会一直在那等待。

      tryLock(long time, TimeUnit unit)方法和tryLock()方法是类似的,只不过区别在于这个方法在拿不到锁时会等待一定的时间,在时间期限之内如果还拿不到锁,就返回false。如果如果一开始拿到锁或者在等待期间内拿到了锁,则返回true。

      所以,一般情况下通过tryLock来获取锁时是这样使用的:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    Lock lock = ...;
    if(lock.tryLock()) {
         try{
             //处理任务
         }catch(Exception ex){
             
         }finally{
             lock.unlock();   //释放锁
         
    }else {
        //如果不能获取锁,则直接做其他事情
    }

       lockInterruptibly()方法比较特殊,当通过这个方法去获取锁时,如果线程正在等待获取锁,则这个线程能够响应中断,即中断线程的等待状态。也就使说,当两个线程同时通过lock.lockInterruptibly()想获取某个锁时,假若此时线程A获取到了锁,而线程B只有在等待,那么对线程B调用threadB.interrupt()方法能够中断线程B的等待过程。

      由于lockInterruptibly()的声明中抛出了异常,所以lock.lockInterruptibly()必须放在try块中或者在调用lockInterruptibly()的方法外声明抛出InterruptedException。

      因此lockInterruptibly()一般的使用形式如下:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    public void method() throws InterruptedException {
        lock.lockInterruptibly();
        try {  
         //.....
        }
        finally {
            lock.unlock();
        }  
    }

      注意,当一个线程获取了锁之后,是不会被interrupt()方法中断的。因为本身在前面的文章中讲过单独调用interrupt()方法不能中断正在运行过程中的线程,只能中断阻塞过程中的线程。

      因此当通过lockInterruptibly()方法获取某个锁时,如果不能获取到,只有进行等待的情况下,是可以响应中断的。

      而用synchronized修饰的话,当一个线程处于等待某个锁的状态,是无法被中断的,只有一直等待下去。

      2.ReentrantLock

      ReentrantLock,意思是“可重入锁”,关于可重入锁的概念在下一节讲述。ReentrantLock是唯一实现了Lock接口的类,并且ReentrantLock提供了更多的方法。下面通过一些实例看具体看一下如何使用ReentrantLock。

      例子1,lock()的正确使用方法

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    public class Test {
        private ArrayList<Integer> arrayList = new ArrayList<Integer>();
        public static void main(String[] args)  {
            final Test test = new Test();
             
            new Thread(){
                public void run() {
                    test.insert(Thread.currentThread());
                };
            }.start();
             
            new Thread(){
                public void run() {
                    test.insert(Thread.currentThread());
                };
            }.start();
        }  
         
        public void insert(Thread thread) {
            Lock lock = new ReentrantLock();    //注意这个地方
            lock.lock();
            try {
                System.out.println(thread.getName()+"得到了锁");
                for(int i=0;i<5;i++) {
                    arrayList.add(i);
                }
            catch (Exception e) {
                // TODO: handle exception
            }finally {
                System.out.println(thread.getName()+"释放了锁");
                lock.unlock();
            }
        }
    }

       各位朋友先想一下这段代码的输出结果是什么?

    Thread-0得到了锁
    Thread-1得到了锁
    Thread-0释放了锁
    Thread-1释放了锁

      也许有朋友会问,怎么会输出这个结果?第二个线程怎么会在第一个线程释放锁之前得到了锁?原因在于,在insert方法中的lock变量是局部变量,每个线程执行该方法时都会保存一个副本,那么理所当然每个线程执行到lock.lock()处获取的是不同的锁,所以就不会发生冲突。

      知道了原因改起来就比较容易了,只需要将lock声明为类的属性即可。

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    public class Test {
        private ArrayList<Integer> arrayList = new ArrayList<Integer>();
        private Lock lock = new ReentrantLock();    //注意这个地方
        public static void main(String[] args)  {
            final Test test = new Test();
             
            new Thread(){
                public void run() {
                    test.insert(Thread.currentThread());
                };
            }.start();
             
            new Thread(){
                public void run() {
                    test.insert(Thread.currentThread());
                };
            }.start();
        }  
         
        public void insert(Thread thread) {
            lock.lock();
            try {
                System.out.println(thread.getName()+"得到了锁");
                for(int i=0;i<5;i++) {
                    arrayList.add(i);
                }
            catch (Exception e) {
                // TODO: handle exception
            }finally {
                System.out.println(thread.getName()+"释放了锁");
                lock.unlock();
            }
        }
    }

       这样就是正确地使用Lock的方法了。

      例子2,tryLock()的使用方法

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    public class Test {
        private ArrayList<Integer> arrayList = new ArrayList<Integer>();
        private Lock lock = new ReentrantLock();    //注意这个地方
        public static void main(String[] args)  {
            final Test test = new Test();
             
            new Thread(){
                public void run() {
                    test.insert(Thread.currentThread());
                };
            }.start();
             
            new Thread(){
                public void run() {
                    test.insert(Thread.currentThread());
                };
            }.start();
        }  
         
        public void insert(Thread thread) {
            if(lock.tryLock()) {
                try {
                    System.out.println(thread.getName()+"得到了锁");
                    for(int i=0;i<5;i++) {
                        arrayList.add(i);
                    }
                catch (Exception e) {
                    // TODO: handle exception
                }finally {
                    System.out.println(thread.getName()+"释放了锁");
                    lock.unlock();
                }
            else {
                System.out.println(thread.getName()+"获取锁失败");
            }
        }
    }

       输出结果:

    Thread-0得到了锁
    Thread-1获取锁失败
    Thread-0释放了锁

      例子3,lockInterruptibly()响应中断的使用方法:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    public class Test {
        private Lock lock = new ReentrantLock();   
        public static void main(String[] args)  {
            Test test = new Test();
            MyThread thread1 = new MyThread(test);
            MyThread thread2 = new MyThread(test);
            thread1.start();
            thread2.start();
             
            try {
                Thread.sleep(2000);
            catch (InterruptedException e) {
                e.printStackTrace();
            }
            thread2.interrupt();
        }  
         
        public void insert(Thread thread) throws InterruptedException{
            lock.lockInterruptibly();   //注意,如果需要正确中断等待锁的线程,必须将获取锁放在外面,然后将InterruptedException抛出
            try {  
                System.out.println(thread.getName()+"得到了锁");
                long startTime = System.currentTimeMillis();
                for(    ;     ;) {
                    if(System.currentTimeMillis() - startTime >= Integer.MAX_VALUE)
                        break;
                    //插入数据
                }
            }
            finally {
                System.out.println(Thread.currentThread().getName()+"执行finally");
                lock.unlock();
                System.out.println(thread.getName()+"释放了锁");
            }  
        }
    }
     
    class MyThread extends Thread {
        private Test test = null;
        public MyThread(Test test) {
            this.test = test;
        }
        @Override
        public void run() {
             
            try {
                test.insert(Thread.currentThread());
            catch (InterruptedException e) {
                System.out.println(Thread.currentThread().getName()+"被中断");
            }
        }
    }

      运行之后,发现thread2能够被正确中断。

      3.ReadWriteLock

      ReadWriteLock也是一个接口,在它里面只定义了两个方法:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    public interface ReadWriteLock {
        /**
         * Returns the lock used for reading.
         *
         * @return the lock used for reading.
         */
        Lock readLock();
     
        /**
         * Returns the lock used for writing.
         *
         * @return the lock used for writing.
         */
        Lock writeLock();
    }

       一个用来获取读锁,一个用来获取写锁。也就是说将文件的读写操作分开,分成2个锁来分配给线程,从而使得多个线程可以同时进行读操作。下面的ReentrantReadWriteLock实现了ReadWriteLock接口。

      4.ReentrantReadWriteLock

      ReentrantReadWriteLock里面提供了很多丰富的方法,不过最主要的有两个方法:readLock()和writeLock()用来获取读锁和写锁。

      下面通过几个例子来看一下ReentrantReadWriteLock具体用法。

      假如有多个线程要同时进行读操作的话,先看一下synchronized达到的效果:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    public class Test {
        private ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();
         
        public static void main(String[] args)  {
            final Test test = new Test();
             
            new Thread(){
                public void run() {
                    test.get(Thread.currentThread());
                };
            }.start();
             
            new Thread(){
                public void run() {
                    test.get(Thread.currentThread());
                };
            }.start();
             
        }  
         
        public synchronized void get(Thread thread) {
            long start = System.currentTimeMillis();
            while(System.currentTimeMillis() - start <= 1) {
                System.out.println(thread.getName()+"正在进行读操作");
            }
            System.out.println(thread.getName()+"读操作完毕");
        }
    }

       这段程序的输出结果会是,直到thread1执行完读操作之后,才会打印thread2执行读操作的信息。

    复制代码
    Thread-0正在进行读操作
    Thread-0正在进行读操作
    Thread-0正在进行读操作
    Thread-0正在进行读操作
    Thread-0正在进行读操作
    Thread-0正在进行读操作
    Thread-0正在进行读操作
    Thread-0正在进行读操作
    Thread-0正在进行读操作
    Thread-0正在进行读操作
    Thread-0正在进行读操作
    Thread-0正在进行读操作
    Thread-0正在进行读操作
    Thread-0正在进行读操作
    Thread-0正在进行读操作
    Thread-0正在进行读操作
    Thread-0正在进行读操作
    Thread-0正在进行读操作
    Thread-0正在进行读操作
    Thread-0正在进行读操作
    Thread-0正在进行读操作
    Thread-0正在进行读操作
    Thread-0正在进行读操作
    Thread-0正在进行读操作
    Thread-0正在进行读操作
    Thread-0正在进行读操作
    Thread-0正在进行读操作
    Thread-0正在进行读操作
    Thread-0读操作完毕
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1读操作完毕
    复制代码

      而改成用读写锁的话:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    public class Test {
        private ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();
         
        public static void main(String[] args)  {
            final Test test = new Test();
             
            new Thread(){
                public void run() {
                    test.get(Thread.currentThread());
                };
            }.start();
             
            new Thread(){
                public void run() {
                    test.get(Thread.currentThread());
                };
            }.start();
             
        }  
         
        public void get(Thread thread) {
            rwl.readLock().lock();
            try {
                long start = System.currentTimeMillis();
                 
                while(System.currentTimeMillis() - start <= 1) {
                    System.out.println(thread.getName()+"正在进行读操作");
                }
                System.out.println(thread.getName()+"读操作完毕");
            finally {
                rwl.readLock().unlock();
            }
        }
    }

       此时打印的结果为:

    复制代码
    Thread-0正在进行读操作
    Thread-0正在进行读操作
    Thread-1正在进行读操作
    Thread-0正在进行读操作
    Thread-1正在进行读操作
    Thread-0正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-0正在进行读操作
    Thread-0正在进行读操作
    Thread-0正在进行读操作
    Thread-0正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-0正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-0正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-0正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-0正在进行读操作
    Thread-1正在进行读操作
    Thread-1正在进行读操作
    Thread-0正在进行读操作
    Thread-1正在进行读操作
    Thread-0正在进行读操作
    Thread-1正在进行读操作
    Thread-0正在进行读操作
    Thread-1正在进行读操作
    Thread-0正在进行读操作
    Thread-1正在进行读操作
    Thread-0正在进行读操作
    Thread-1正在进行读操作
    Thread-0正在进行读操作
    Thread-1正在进行读操作
    Thread-0正在进行读操作
    Thread-1正在进行读操作
    Thread-0读操作完毕
    Thread-1读操作完毕
    复制代码

      说明thread1和thread2在同时进行读操作。

      这样就大大提升了读操作的效率。

      不过要注意的是,如果有一个线程已经占用了读锁,则此时其他线程如果要申请写锁,则申请写锁的线程会一直等待释放读锁。

      如果有一个线程已经占用了写锁,则此时其他线程如果申请写锁或者读锁,则申请的线程会一直等待释放写锁。

      关于ReentrantReadWriteLock类中的其他方法感兴趣的朋友可以自行查阅API文档。

      5.Lock和synchronized的选择

      总结来说,Lock和synchronized有以下几点不同:

      1)Lock是一个接口,而synchronized是Java中的关键字,synchronized是内置的语言实现;

      2)synchronized在发生异常时,会自动释放线程占有的锁,因此不会导致死锁现象发生;而Lock在发生异常时,如果没有主动通过unLock()去释放锁,则很可能造成死锁现象,因此使用Lock时需要在finally块中释放锁;

      3)Lock可以让等待锁的线程响应中断,而synchronized却不行,使用synchronized时,等待的线程会一直等待下去,不能够响应中断;

      4)通过Lock可以知道有没有成功获取锁,而synchronized却无法办到。

      5)Lock可以提高多个线程进行读操作的效率。

      在性能上来说,如果竞争资源不激烈,两者的性能是差不多的,而当竞争资源非常激烈时(即有大量线程同时竞争),此时Lock的性能要远远优于synchronized。所以说,在具体使用时要根据适当情况选择。

    三.锁的相关概念介绍

      在前面介绍了Lock的基本使用,这一节来介绍一下与锁相关的几个概念。

      1.可重入锁

      如果锁具备可重入性,则称作为可重入锁。像synchronized和ReentrantLock都是可重入锁,可重入性在我看来实际上表明了锁的分配机制:基于线程的分配,而不是基于方法调用的分配。举个简单的例子,当一个线程执行到某个synchronized方法时,比如说method1,而在method1中会调用另外一个synchronized方法method2,此时线程不必重新去申请锁,而是可以直接执行方法method2。

      看下面这段代码就明白了:

    1
    2
    3
    4
    5
    6
    7
    8
    9
    class MyClass {
        public synchronized void method1() {
            method2();
        }
         
        public synchronized void method2() {
             
        }
    }

       上述代码中的两个方法method1和method2都用synchronized修饰了,假如某一时刻,线程A执行到了method1,此时线程A获取了这个对象的锁,而由于method2也是synchronized方法,假如synchronized不具备可重入性,此时线程A需要重新申请锁。但是这就会造成一个问题,因为线程A已经持有了该对象的锁,而又在申请获取该对象的锁,这样就会线程A一直等待永远不会获取到的锁。

      而由于synchronized和Lock都具备可重入性,所以不会发生上述现象。

      2.可中断锁

      可中断锁:顾名思义,就是可以相应中断的锁。

      在Java中,synchronized就不是可中断锁,而Lock是可中断锁。

      如果某一线程A正在执行锁中的代码,另一线程B正在等待获取该锁,可能由于等待时间过长,线程B不想等待了,想先处理其他事情,我们可以让它中断自己或者在别的线程中中断它,这种就是可中断锁。

      在前面演示lockInterruptibly()的用法时已经体现了Lock的可中断性。

      3.公平锁

      公平锁即尽量以请求锁的顺序来获取锁。比如同是有多个线程在等待一个锁,当这个锁被释放时,等待时间最久的线程(最先请求的线程)会获得该所,这种就是公平锁。

      非公平锁即无法保证锁的获取是按照请求锁的顺序进行的。这样就可能导致某个或者一些线程永远获取不到锁。

      在Java中,synchronized就是非公平锁,它无法保证等待的线程获取锁的顺序。

      而对于ReentrantLock和ReentrantReadWriteLock,它默认情况下是非公平锁,但是可以设置为公平锁。

      看一下这2个类的源代码就清楚了:

      

      在ReentrantLock中定义了2个静态内部类,一个是NotFairSync,一个是FairSync,分别用来实现非公平锁和公平锁。

      我们可以在创建ReentrantLock对象时,通过以下方式来设置锁的公平性:

    1
    ReentrantLock lock = new ReentrantLock(true);

       如果参数为true表示为公平锁,为fasle为非公平锁。默认情况下,如果使用无参构造器,则是非公平锁。

      

      另外在ReentrantLock类中定义了很多方法,比如:

      isFair()        //判断锁是否是公平锁

      isLocked()    //判断锁是否被任何线程获取了

      isHeldByCurrentThread()   //判断锁是否被当前线程获取了

      hasQueuedThreads()   //判断是否有线程在等待该锁

      在ReentrantReadWriteLock中也有类似的方法,同样也可以设置为公平锁和非公平锁。不过要记住,ReentrantReadWriteLock并未实现Lock接口,它实现的是ReadWriteLock接口。

      4.读写锁

      读写锁将对一个资源(比如文件)的访问分成了2个锁,一个读锁和一个写锁。

      正因为有了读写锁,才使得多个线程之间的读操作不会发生冲突。

      ReadWriteLock就是读写锁,它是一个接口,ReentrantReadWriteLock实现了这个接口。

      可以通过readLock()获取读锁,通过writeLock()获取写锁。

      上面已经演示过了读写锁的使用方法,在此不再赘述。

    尾记录:

    笔者水平一般,不过此博客在引言中的目的已全部达到。这只是笔者在学习过程中的总结与概括,如存在不正确的,欢迎大家批评指出。
    

    延伸学习:对于LOCK底层的实现,大家可以参考:
    点击Lock底层介绍博客

    两种同步方式性能测试,大家可以参考:
    点击查看两种同步方式性能测试博客

    博主18年3月新增:

    回来看自己博客。发现东西阐述的不够完整。这里在做补充,因为这篇博客访问较大,所以为了不误导大家,尽量介绍给大家正确的表述:
    1、两种锁的底层实现方式:
    synchronized:我们知道java是用字节码指令来控制程序(这里不包括热点代码编译成机器码)。在字节指令中,存在有synchronized所包含的代码块,那么会形成2段流程的执行。

    我们点击查看SyncDemo.java的源码SyncDemo.class,可以看到如下:
    这里写图片描述

    如上就是这段代码段字节码指令,没你想的那么难吧。言归正传,我们可以清晰段看到,其实synchronized映射成字节码指令就是增加来两个指令:monitorenter和monitorexit。当一条线程进行执行的遇到monitorenter指令的时候,它会去尝试获得锁,如果获得锁那么锁计数+1(为什么会加一呢,因为它是一个可重入锁,所以需要用这个锁计数判断锁的情况),如果没有获得锁,那么阻塞。当它遇到monitorexit的时候,锁计数器-1,当计数器为0,那么就释放锁。

    那么有的朋友看到这里就疑惑了,那图上有2个monitorexit呀?马上回答这个问题:上面我以前写的文章也有表述过,synchronized锁释放有两种机制,一种就是执行完释放;另外一种就是发送异常,虚拟机释放。图中第二个monitorexit就是发生异常时执行的流程,这就是我开头说的“会有2个流程存在“。而且,从图中我们也可以看到在第13行,有一个goto指令,也就是说如果正常运行结束会跳转到19行执行。

    这下,你对synchronized是不是了解的很清晰了呢。接下来我们再聊一聊Lock。

    Lock:Lock实现和synchronized不一样,后者是一种悲观锁,它胆子很小,它很怕有人和它抢吃的,所以它每次吃东西前都把自己关起来。而Lock呢底层其实是CAS乐观锁的体现,它无所谓,别人抢了它吃的,它重新去拿吃的就好啦,所以它很乐观。具体底层怎么实现,博主不在细述,有机会的话,我会对concurrent包下面的机制好好和大家说说,如果面试问起,你就说底层主要靠volatile和CAS操作实现的。

    现在,才是我真正想在这篇博文后面加的,我要说的是:尽可能去使用synchronized而不要去使用LOCK

    什么概念呢?我和大家打个比方:你叫jdk,你生了一个孩子叫synchronized,后来呢,你领养了一个孩子叫LOCK。起初,LOCK刚来到新家的时候,它很乖,很懂事,各个方面都表现的比synchronized好。你很开心,但是你内心深处又有一点淡淡的忧伤,你不希望你自己亲生的孩子竟然还不如一个领养的孩子乖巧。这个时候,你对亲生的孩子教育更加深刻了,你想证明,你的亲生孩子synchronized并不会比领养的孩子LOCK差。(博主只是打个比方)

    那如何教育呢?
    在jdk1.6~jdk1.7的时候,也就是synchronized16、7岁的时候,你作为爸爸,你给他优化了,具体优化在哪里呢:

    1、线程自旋和适应性自旋
    我们知道,java’线程其实是映射在内核之上的,线程的挂起和恢复会极大的影响开销。并且jdk官方人员发现,很多线程在等待锁的时候,在很短的一段时间就获得了锁,所以它们在线程等待的时候,并不需要把线程挂起,而是让他无目的的循环,一般设置10次。这样就避免了线程切换的开销,极大的提升了性能。
    而适应性自旋,是赋予了自旋一种学习能力,它并不固定自旋10次一下。他可以根据它前面线程的自旋情况,从而调整它的自旋,甚至是不经过自旋而直接挂起。

    2、锁消除
    什么叫锁消除呢?就是把不必要的同步在编译阶段进行移除。
    那么有的小伙伴又迷糊了,我自己写的代码我会不知道这里要不要加锁?我加了锁就是表示这边会有同步呀?
    并不是这样,这里所说的锁消除并不一定指代是你写的代码的锁消除,我打一个比方:
    在jdk1.5以前,我们的String字符串拼接操作其实底层是StringBuffer来实现的(这个大家可以用我前面介绍的方法,写一个简单的demo,然后查看class文件中的字节码指令就清楚了),而在jdk1.5之后,那么是用StringBuilder来拼接的。我们考虑前面的情况,比如如下代码:

    String str1="qwe";
    String str2="asd";
    String str3=str1+str2;

    底层实现会变成这样:

    StringBuffer sb = new StringBuffer();
    sb.append("qwe");
    sb.append("asd");

    我们知道,StringBuffer是一个线程安全的类,也就是说两个append方法都会同步,通过指针逃逸分析(就是变量不会外泄),我们发现在这段代码并不存在线程安全问题,这个时候就会把这个同步锁消除。

    3、锁粗化
    在用synchronized的时候,我们都讲究为了避免大开销,尽量同步代码块要小。那么为什么还要加粗呢?
    我们继续以上面的字符串拼接为例,我们知道在这一段代码中,每一个append都需要同步一次,那么我可以把锁粗化到第一个append和最后一个append(这里不要去纠结前面的锁消除,我只是打个比方)

    4、轻量级锁

    5、偏向锁

    关于最后这两种,我希望留个有缘的读者自己去查找,我不希望我把一件事情描述的那么详细,自己动手得到才是你自己的,博主可以告诉你的是,最后两种并不难。。加油吧,各位。

  • 相关阅读:
    PF不明内存泄露已解决,白头发也没了(转)
    第06篇 MEF部件的生命周期(PartCreationPolicy)
    [MEF]第05篇 MEF的目录(Catalog)筛选
    [MEF]第04篇 MEF的多部件导入(ImportMany)和目录服务
    [MEF]第03篇 MEF延迟加载导出部件及元数据
    [MEF]第02篇 MEF的导入导出契约
    关于android的设备管理器-DevicePolicyManager(二)
    android KK版本号收到短信后,点亮屏的操作
    windows server 2008 安装Microsoft ActiveSync 6.1提示缺少一个Windows Mobile设备中心所须要的Windows组件
    设计模式
  • 原文地址:https://www.cnblogs.com/xuxinstyle/p/9690316.html
Copyright © 2011-2022 走看看