zoukankan      html  css  js  c++  java
  • day9-协程

    生产者和消费者模型:

    #!/usr/bin/env  python
    #coding:utf8
    
    import threading,Queue
    import time
    import random
    
    
    def producer(name,n):#生产者
        # while True:#无限循环生产包子
        time.sleep(random.randrange(3))#random生成一个3以内不包含3的随机数,通过随机数决定等待多长时间,主要便于测试
        if q.qsize()<4:#判断队列个数如果小于4程序继续往下执行,#包子剩余的个数如果小于4个才生产包子,避免浪费.每个厨师在生产包子都会看还剩余几个
            for i in range(2):#每个厨师生产2个包子上传到队列
                print '%s生产了[%d]个包子
    '%(name,n)
                q.put(n)
            q.join()#队列的个数为空则阻塞.#因为消费者每吃完一个包子都会告诉厨师,当所有包子都吃完厨师继续生产包子.#就是继续下一次循环
            print '包子已卖光了,[%d]'%q.qsize()
    
    
    def consumer(name,n):#消费者
        while True:#无限循环吃包子
            print '%s 吃了[%d]个包子
    '%(name,n)
            q.get()#吃掉一个包子从队列减1
            time.sleep(1)#每个消费者吃掉一个包子的时候等待1秒
            q.task_done()#每个消费者吃掉一个包子通知队列(厨师)
    
    
    
    if __name__=='__main__':
        q=Queue.Queue()
        c_name=['z1','z2','z3','z4']#4个消费者
        p_name=['p1','p2']#2个厨师
    
        for name in p_name:
            p=threading.Thread(target=producer,args=[name,1,])#开启2个线程调用producer函数,#2个厨师同时生产包子
            p.start()#开启线程,线程的开关
    
        for name in c_name:
            c=threading.Thread(target=consumer,args=[name,1,])#开启4个线程调用consumer函数,#4个消费者同时吃包子
            c.start()#开启线程,线程的开关

     执行结果:

    
    

    p1生产了[1]个包子

    p1生产了[1]个包子

    z1 吃了[1]个包子

    z4 吃了[1]个包子
    z1 吃了[1]个包子

    包子已卖光了,[0]

     

    协程

    协程,又称微线程,纤程。英文名Coroutine。一句话说明什么是线程:协程是一种用户态的轻量级线程

    协程拥有自己的寄存器上下文和栈。协程调度切换时,将寄存器上下文和栈保存到其他地方,在切回来的时候,恢复先前保存的寄存器上下文和栈。因此:

    协程能保留上一次调用时的状态(即所有局部状态的一个特定组合),每次过程重入时,就相当于进入上一次调用的状态,换种说法:进入上一次离开时所处逻辑流的位置。

    协程的好处:

    • 无需线程上下文切换的开销
    • 无需原子操作锁定及同步的开销
    • 方便切换控制流,简化编程模型
    • 高并发+高扩展性+低成本:一个CPU支持上万的协程都不是问题。所以很适合用于高并发处理。

    缺点:

    • 无法利用多核资源:协程的本质是个单线程,它不能同时将 单个CPU 的多个核用上,协程需要和进程配合才能运行在多CPU上.当然我们日常所编写的绝大部分应用都没有这个必要,除非是cpu密集型应用。
    • 进行阻塞(Blocking)操作(如IO时)会阻塞掉整个程序

    使用yield实现协程操作例子    

    import time
    import queue
    def consumer(name):
        print("--->starting eating baozi...")
        while True:
            new_baozi = yield
            print("[%s] is eating baozi %s" % (name,new_baozi))
            #time.sleep(1)
     
    def producer():
     
        r = con.__next__()
        r = con2.__next__()
        n = 0
        while n < 5:
            n +=1
            con.send(n)
            con2.send(n)
            print("33[32;1m[producer]33[0m is making baozi %s" %n )
     
     
    if __name__ == '__main__':
        con = consumer("c1")
        con2 = consumer("c2")
        p = producer()

    Greenlet

    #!/usr/bin/env python
    # -*- coding:utf-8 -*-
      
      
    from greenlet import greenlet
      
      
    def test1():
        print 12
        gr2.switch()
        print 34
        gr2.switch()
      
      
    def test2():
        print 56
        gr1.switch()
        print 78
      
    gr1 = greenlet(test1)
    gr2 = greenlet(test2)
    gr1.switch()

      

    Gevent 

    Gevent 是一个第三方库,可以轻松通过gevent实现并发同步或异步编程,在gevent中用到的主要模式是Greenlet, 它是以C扩展模块形式接入Python的轻量级协程。 Greenlet全部运行在主程序操作系统进程的内部,但它们被协作式地调度。

    import gevent
     
    def foo():
        print('Running in foo')
        gevent.sleep(0)
        print('Explicit context switch to foo again')
     
    def bar():
        print('Explicit context to bar')
        gevent.sleep(0)
        print('Implicit context switch back to bar')
     
    gevent.joinall([
        gevent.spawn(foo),
        gevent.spawn(bar),
    ])

    输出:

    Running in foo
    Explicit context to bar
    Explicit context switch to foo again
    Implicit context switch back to bar
    

    同步与异步的性能区别 

    import gevent
     
    def task(pid):
        """
        Some non-deterministic task
        """
        gevent.sleep(0.5)
        print('Task %s done' % pid)
     
    def synchronous():
        for i in range(1,10):
            task(i)
     
    def asynchronous():
        threads = [gevent.spawn(task, i) for i in range(10)]
        gevent.joinall(threads)
     
    print('Synchronous:')
    synchronous()
     
    print('Asynchronous:')
    asynchronous()

    上面程序的重要部分是将task函数封装到Greenlet内部线程的gevent.spawn。 初始化的greenlet列表存放在数组threads中,此数组被传给gevent.joinall 函数,后者阻塞当前流程,并执行所有给定的greenlet。执行流程只会在 所有greenlet执行完后才会继续向下走。  

    遇到IO阻塞时会自动切换任务

    from gevent import monkey; monkey.patch_all()
    import gevent
    from  urllib.request import urlopen
     
    def f(url):
        print('GET: %s' % url)
        resp = urlopen(url)
        data = resp.read()
        print('%d bytes received from %s.' % (len(data), url))
     
    gevent.joinall([
            gevent.spawn(f, 'https://www.python.org/'),
            gevent.spawn(f, 'https://www.yahoo.com/'),
            gevent.spawn(f, 'https://github.com/'),
    ])

    通过gevent实现单线程下的多socket并发

    server side 

    import sys
    import socket
    import time
    import gevent
     
    from gevent import socket,monkey
    monkey.patch_all()
    def server(port):
        s = socket.socket()
        s.bind(('0.0.0.0', port))
        s.listen(500)
        while True:
            cli, addr = s.accept()
            gevent.spawn(handle_request, cli)
    def handle_request(s):
        try:
            while True:
                data = s.recv(1024)
                print("recv:", data)
                s.send(data)
                if not data:
                    s.shutdown(socket.SHUT_WR)
     
        except Exception as  ex:
            print(ex)
        finally:
     
            s.close()
    if __name__ == '__main__':
        server(8001)

    client side   

    import socket
     
    HOST = 'localhost'    # The remote host
    PORT = 8001           # The same port as used by the server
    s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
    s.connect((HOST, PORT))
    while True:
        msg = bytes(input(">>:"),encoding="utf8")
        s.sendall(msg)
        data = s.recv(1024)
        #print(data)
     
        print('Received', repr(data))
    s.close()

      

    论事件驱动与异步IO

    事件驱动编程是一种编程范式,这里程序的执行流由外部事件来决定。它的特点是包含一个事件循环,当外部事件发生时使用回调机制来触发相应的处理。另外两种常见的编程范式是(单线程)同步以及多线程编程。

    让我们用例子来比较和对比一下单线程、多线程以及事件驱动编程模型。下图展示了随着时间的推移,这三种模式下程序所做的工作。这个程序有3个任务需要完成,每个任务都在等待I/O操作时阻塞自身。阻塞在I/O操作上所花费的时间已经用灰色框标示出来了。

     

    在单线程同步模型中,任务按照顺序执行。如果某个任务因为I/O而阻塞,其他所有的任务都必须等待,直到它完成之后它们才能依次执行。这种明确的执行顺序和串行化处理的行为是很容易推断得出的。如果任务之间并没有互相依赖的关系,但仍然需要互相等待的话这就使得程序不必要的降低了运行速度。

    在多线程版本中,这3个任务分别在独立的线程中执行。这些线程由操作系统来管理,在多处理器系统上可以并行处理,或者在单处理器系统上交错执行。这使得当某个线程阻塞在某个资源的同时其他线程得以继续执行。与完成类似功能的同步程序相比,这种方式更有效率,但程序员必须写代码来保护共享资源,防止其被多个线程同时访问。多线程程序更加难以推断,因为这类程序不得不通过线程同步机制如锁、可重入函数、线程局部存储或者其他机制来处理线程安全问题,如果实现不当就会导致出现微妙且令人痛不欲生的bug。

    在事件驱动版本的程序中,3个任务交错执行,但仍然在一个单独的线程控制中。当处理I/O或者其他昂贵的操作时,注册一个回调到事件循环中,然后当I/O操作完成时继续执行。回调描述了该如何处理某个事件。事件循环轮询所有的事件,当事件到来时将它们分配给等待处理事件的回调函数。这种方式让程序尽可能的得以执行而不需要用到额外的线程。事件驱动型程序比多线程程序更容易推断出行为,因为程序员不需要关心线程安全问题。

    当我们面对如下的环境时,事件驱动模型通常是一个好的选择:

    1. 程序中有许多任务,而且…
    2. 任务之间高度独立(因此它们不需要互相通信,或者等待彼此)而且…
    3. 在等待事件到来时,某些任务会阻塞。

    当应用程序需要在任务间共享可变的数据时,这也是一个不错的选择,因为这里不需要采用同步处理。

    网络应用程序通常都有上述这些特点,这使得它们能够很好的契合事件驱动编程模型。

     select-server端代码:

    #!/usr/bin/env  python
    #coding:utf8
    import select
    import socket
    import time
    import sys
    
    import Queue#用于存放客服端发送过来的消息
    
    server_ip=('0.0.0.0',9003)#定义元组,服务器IP,端口
    sk=socket.socket()#实例化socket模块的socket类创建一个对象为sk
    sk.bind(server_ip)#调用sk对象中的bind方法,传入参数.绑定IP和端口
    sk.listen(20)#server端允许的最大连接数
    sk.setblocking(False)#遇到IO的时候不阻塞
    inputs=[sk,]#定义一个列表存放服务端和客服端socket对象
    outputs=[]#定义一个列表存放客服端socket对象
    message={}#定义一个字典存放"{客服端socket对象:队列}",队列中是放的客服端发送过来的消息
    
    
    
    while True:
        """
        select一共可以设置4个参数
        rList=inputs=[sk,客服端socket对象]
        wList=outputs[客服端socket对象]
        第三个参数异常信息
        第四个参数是超时时间,如果客服端没有连接server端,0.5秒超时,程序会继续往下执行
        程序第一次启动的时候 rList=sk 感知server的变化,只有客服端连接过来server才会变化
        如果客服端已经连接进来此时 inputs列表中至少存在2个元素 server的socket对象和client端的socket对象,select会遍历列表中的每一个元素并感知时候是否有变化
        如果有变化那么满足条件select不会阻塞程序继续向下执行
        如果select感知到rList发生变化,比如客服端给服务端发送消息,程序向下执行
        """
        rList,wList,error=select.select(inputs,outputs,inputs)#读,写,错误,超时时间
        #客服端连接过来,rList [<socket._socketobject object at 0x101445750>]
        for r in  rList:
            #如果rList有变化进入for循环,判断r == <socket._socketobject object at 0x101445750>
            if r == sk:#
                conn,address=r.accept()#监听客服端socket对象
                inputs.append(conn)#把客服端socket对象放入inputs列表中
                message[conn]=Queue.Queue()#message={socket对象:队列}
                print address#打印客服端IP
            ####注视中客服端连接指的是客服端socket对象#####
            else:
                #如果r==客服端连接,前提条件是已经感知到客服端socket对象发生变化,程序才会执行到此处
                #监听客服端发送过来的数据
                data=r.recv(1024)
                if data:
                    #如果有数据把客服端socket对象放入outputs列表中让select感知wList的变化,也就是感知客服端是否发送过来消息,用于读写分离
                    print data  #打印客服端发送过来的消息
                    outputs.append(r)#把客服端连接添加到outputs列表
                    message[r].put(data)#message[客服端连接].put(接受的数据),  message{客服端socket对象:客服端发送过来的消息上次到队列}
                else:
                    inputs.remove(r)#如果客服端异常断开,删除inputs列表中客服端socket对象
                    del message[w]#如果客服端异常断开,删除message字典中客服端socket对象和客服端的消息队列
                    #客服端异常断开的时候会发送空数据,此时在inputs列表中删除客服端连接
    
        for w in wList:
            #select遍历wList的时候感知到了变化,也就是服务端已经接受到客服端已经发送过来的消息了
            try:
                data=message[w].get_nowait()#message[客服端socket对象]获取到消息队列,最后得到发送过来的消息,get_nowait如果从队列中没有获取到数据也不会阻塞
                w.sendall(data)#发送数据给客服端
            #给客服端发送数据
            except Queue.Empty as e:#捕捉队列是否为空
                if message[w]:
                    del message[w]#删除message字典中客服端socket对象和客服端的消息队列
            outputs.remove(w)#删除outputs列表中客服端socket对象
            #删除客服端连接

    select-client端代码:

    import socket
    
    server_ip=('127.0.0.1', 9003)
    sk=socket.socket()
    sk.connect(server_ip)
    
    
    while True:
        data=raw_input('Please:').strip()
        if len(data) ==0:continue
        sk.sendall(data)
        server_response=sk.recv(1024)
        print server_response
  • 相关阅读:
    1041 考试座位号
    1040 有几个PAT
    1039 到底买不买
    1038 统计同成绩学生
    1037 在霍格沃茨找零钱
    1036 跟奥巴马一起编程
    1035 插入与归并
    vue-router--路由传参
    vue-router--路由原理
    vuex--在computed中使用
  • 原文地址:https://www.cnblogs.com/xuyanmei/p/5291622.html
Copyright © 2011-2022 走看看