做过一些研究的同学会有感受,仅阅读自己研究方向的文献,新想法还是不会特别多。这是因为,读到的都是该研究问题已经完成时的想法,它们本身无法启发新的想法。如何产生新的想法呢?我总结有三种可行的基本途径:
实践法。即在研究任务上实现已有最好的算法,通过分析实验结果,例如发现这些算法计算复杂度特别高、训练收敛特别慢,或者发现该算法的错误样例呈现明显的规律,都可以启发你改进已有算法的思路。现在很多自然语言处理任务的Leaderboard上的最新算法,就是通过分析错误样例来有针对性改进算法的 [1]。
类比法。即将研究问题与其他任务建立类比联系,调研其他相似任务上最新的有效思想、算法或工具,通过合理的转换迁移,运用到当前的研究问题上来。例如,当初注意力机制在神经网络机器翻译中大获成功,当时主要是在词级别建立注意力,后来我们课题组的林衍凯和沈世奇提出建立句子级别的注意力解决关系抽取的远程监督训练数据的标注噪音问题 [2],这就是一种类比的做法。
组合法。即将新的研究问题分解为若干已被较好解决的子问题,通过有机地组合这些子问题上的最好做法,建立对新的研究问题的解决方案。例如,我们提出的融合知识图谱的预训练语言模型,就是将BERT和TransE等已有算法融合起来建立的新模型 [3]。
正如武侠中的最高境界是无招胜有招,好的研究想法并不拘泥于以上的路径,很多时候是在研究者对研究问题深刻认知的基础上,综合丰富的研究阅历和聪明才智产生”顿悟“的结果。这对初学者而言恐怕还很难一窥门径,需要从基本功做起,经过大量科研实践训练后,才能有登堂入室之感。
原文链接:传送门
著名历史学家、清华校友何炳棣先生曾在自传《读史阅世六十年》中提及著名数学家林家翘的一句嘱咐:“要紧的是不管搞哪一行,千万不要做第二等的题目。” 具体到每个领域,什么是一等的题目本身见仁见智,其实更指向内心“求真”的态度。