调不尽的内存泄漏,用不完的Valgrind
Valgrind 安装
1. 到www.valgrind.org下载最新版valgrind-X.X.X.tar.bz2
2. 解压安装包:tar –jxvf valgrind-3.2.3.tar.bz2
3. 解压后生成目录valgrind-3.2.3
4. cd valgrind-3.2.3
5. 运行./autogen.sh设置环境(需要标准的autoconf工具)(可选)
6. ./configure;配置Valgrind,生成MakeFile文件,具体参数信息详见INSTALL文件。一般只需要设置--prefix=/where/you/want/it/installed
7. Make;编译Valgrind
8. make install;安装Valgrind
Valgrind包含的工具
Valgrind支持很多工具:memcheck,addrcheck,cachegrind,Massif,helgrind和Callgrind等。在运行Valgrind时,你必须指明想用的工具,如果省略工具名,默认运行memcheck。
1、memcheck
memcheck探测程序中内存管理存在的问题。它检查所有对内存的读/写操作,并截取所有的malloc/new/free/delete调用。因此memcheck工具能够探测到以下问题:
1)使用未初始化的内存
2)读/写已经被释放的内存
3)读/写内存越界
4)读/写不恰当的内存栈空间
5)内存泄漏
6)使用malloc/new/new[]和free/delete/delete[]不匹配。
7)src和dst的重叠
2、cachegrind
cachegrind是一个cache剖析器。它模拟执行CPU中的L1, D1和L2 cache,因此它能很精确的指出代码中的cache未命中。如果你需要,它可以打印出cache未命中的次数,内存引用和发生cache未命中的每一行代码,每一个函数,每一个模块和整个程序的摘要。如果你要求更细致的信息,它可以打印出每一行机器码的未命中次数。在x86和amd64上, cachegrind通过CPUID自动探测机器的cache配置,所以在多数情况下它不再需要更多的配置信息了。
3、helgrind
helgrind查找多线程程序中的竞争数据。helgrind查找内存地址,那些被多于一条线程访问的内存地址,但是没有使用一致的锁就会被查出。这表示这些地址在多线程间访问的时候没有进行同步,很可能会引起很难查找的时序问题。
它主要用来检查多线程程序中出现的竞争问题。Helgrind 寻找内存中被多个线程访问,而又没有一贯加锁的区域,这些区域往往是线程之间失去同步的地方,而且会导致难以发掘的错误。Helgrind实现了名为”Eraser” 的竞争检测算法,并做了进一步改进,减少了报告错误的次数。
4、Callgrind
Callgrind收集程序运行时的一些数据,函数调用关系等信息,还可以有选择地进行cache 模拟。在运行结束时,它会把分析数据写入一个文件。callgrind_annotate可以把这个文件的内容转化成可读的形式。
一般用法:
$valgrind --tool=callgrind ./sec_infod
会在当前目录下生成callgrind.out.[pid], 如果我们想结束程序, 可以
$killall callgrind
然后我们可以用
$callgrind_annotate --auto=yes callgrind.out.[pid] > log
$vi log
5、Massif
堆栈分析器,它能测量程序在堆栈中使用了多少内存,告诉我们堆块,堆管理块和栈的大小。Massif能帮助我们减少内存的使用,在带有虚拟内存的现代系统中,它还能够加速我们程序的运行,减少程序停留在交换区中的几率。
6、lackey
lackey是一个示例程序,以其为模版可以创建你自己的工具。在程序结束后,它打印出一些基本的关于程序执行统计数据。
Valgrind的参数
用法: valgrind [options] prog-and-args [options]: 常用选项,适用于所有Valgrind工具
--tool=<name>
最常用的选项。运行 valgrind中名为toolname的工具。默认memcheck。
-h --help
显示所有选项的帮助,包括内核和选定的工具两者。
--version
显示valgrind内核的版本,每个工具都有各自的版本。
-q --quiet
安静地运行,只打印错误信息。
--verbose
更详细的信息。
--trace-children=<yes|no>
跟踪子线程? [default: no]
--track-fds=<yes|no>
跟踪打开的文件描述?[default: no]
--time-stamp=<yes|no>
增加时间戳到LOG信息? [default: no]
--log-fd=<number>
输出LOG到描述符文件 [2=stderr]
--log-file=<file>
将输出的信息写入到filename.PID的文件里,PID是运行程序的进行ID
--log-file-exactly=<file>
输出LOG信息到 file
LOG信息输出
--xml=yes
将信息以xml格式输出,只有memcheck可用
--num-callers=<number>
show <number> callers in stack traces [12]
--error-exitcode=<number>
如果发现错误则返回错误代码 [0=disable]
--db-attach=<yes|no>
当出现错误,valgrind会自动启动调试器gdb。[default: no]
--db-command=<command>
启动调试器的命令行选项[gdb -nw %f %p]
适用于Memcheck工具的相关选项:
--leak-check=<no|summary|full>
要求对leak给出详细信息? Leak是指,存在一块没有被引用的内存空间,或没有被释放的内存空间,如summary,只反馈一些总结信息,告诉你有多少个malloc,多少个free 等;如果是full将输出所有的leaks,也就是定位到某一个malloc/free。 [default: summary]
--show-reachable=<yes|no>
如果为no,只输出没有引用的内存leaks,或指向malloc返回的内存块中部某处的leaks [default: no]
更详细的参数指令见附录A。
Valgrind的使用
首先,在编译程序的时候打开调试模式(gcc编译器的-g选项)。如果没有调试信息,即使最好的valgrind工具也将中能够猜测特定的代码是属于哪一个函数。打开调试选项进行编译后再用valgrind检查,valgrind将会给你的个详细的报告,比如哪一行代码出现了内存泄漏。
当检查的是C++程序的时候,还应该考虑另一个选项 -fno-inline。它使得函数调用链很清晰,这样可以减少你在浏览大型C++程序时的混乱。比如在使用这个选项的时候,用memcheck检查openoffice就很容易。当然,你可能不会做这项工作,但是使用这一选项使得valgrind生成更精确的错误报告和减少混乱。
一些编译优化选项(比如-O2或者更高的优化选项),可能会使得memcheck提交错误的未初始化报告,因此,为了使得valgrind的报告更精确,在编译的时候最好不要使用优化选项。
如果程序是通过脚本启动的,可以修改脚本里启动程序的代码,或者使用--trace-children=yes选项来运行脚本。
下面是用memcheck检查sample.c的例子
这里用到的示例程序文件名为:sample.c(如下所示),选用的编译器为gcc。
生成可执行程序
gcc –g sample.c –o sample
图1
运行Valgrind
valgrind --tool=memcheck ./sample
以下是运行上述命令后的输出
图2
左边显示类似行号的数字(10297)表示的是 Process ID。
最上面的红色方框表示的是 valgrind 的版本信息。
中间的红色方框表示 valgrind 通过运行被测试程序,发现的内存问题。通过阅读这些信息,可以发现:
l 这是一个对内存的非法写操作,非法写操作的内存是4 bytes。
l 发生错误时的函数堆栈,以及具体的源代码行号。
l 非法写操作的具体地址空间。
最下面的红色方框是对发现的内存问题和内存泄漏问题的总结。内存泄漏的大小(40 bytes)也能够被检测出来。
Valgrind的示例
例1.使用未初始化的内存
代码如下
#include <stdio.h>
int main()
{
int x;
if(x == 0)
{
printf("X is zero");
}
return 0;
}
Valgrind提示如下
==14222== Conditional jump or move depends on
uninitialised value(s)
==14222== at 0x400484: main (sample2.c:6)
X is zero==14222==
==14222== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 5 from 1)
==14222== malloc/free: in use at exit: 0 bytes in 0 blocks.
==14222== malloc/free: 0 allocs, 0 frees, 0 bytes allocated.
==14222== For counts of detected errors, rerun
with: -v
==14222== All heap blocks were freed -- no leaks
are possible.
例2.内存读写越界
代码如下
#include
<stdlib.h>
#include <stdio.h>
int main(int argc,char *argv[])
{
int len=5;
int i;
int *pt=(int*)malloc(len*sizeof(int));
int *p=pt;
for(i=0;i<len;i++)
{p++;}
*p=5;
printf(“%d”,*p);
return;
}
Valgrind提示如下
==23045== Invalid write of size 4
==23045== at 0x40050A: main (sample2.c:11)
==23045== Address 0x4C2E044 is 0 bytes after a block of size 20 alloc'd
==23045== at 0x4A05809: malloc (vg_replace_malloc.c:149)
==23045== by 0x4004DF: main (sample2.c:7)
==23045==
==23045== Invalid read of size 4
==23045== at 0x400514: main (sample2.c:12)
==23045== Address 0x4C2E044 is 0 bytes after a block of size 20 alloc'd
==23045== at 0x4A05809: malloc (vg_replace_malloc.c:149)
==23045== by 0x4004DF: main (sample2.c:7)
5==23045==
==23045== ERROR SUMMARY: 2 errors from 2 contexts (suppressed: 5 from 1)
==23045== malloc/free: in use at exit: 20 bytes in 1 blocks.
==23045== malloc/free: 1 allocs, 0 frees, 20 bytes allocated.
==23045== For counts of detected errors, rerun
with: -v
==23045== searching for pointers to 1 not-freed blocks.
==23045== checked 66,584 bytes.
==23045==
==23045== LEAK SUMMARY:
==23045== definitely lost: 20 bytes in 1 blocks.
==23045== possibly lost: 0 bytes in 0 blocks.
==23045== still reachable: 0 bytes in 0 blocks.
==23045== suppressed: 0 bytes in 0 blocks.
==23045== Use --leak-check=full to see details of
leaked memory.
例3.src和dst内存覆盖
代码如下
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
int main(int argc,char *argv[])
{ char x[50];
int i;
for(i=0;i<50;i++)
{x[i]=i;}
strncpy(x+20,x,20); //Good
strncpy(x+20,x,21); //Overlap
x[39]=’