zoukankan      html  css  js  c++  java
  • 全局唯一订单号生成方法(参考snowflake)

    backgroud

    Snowflake is a network service for generating unique ID numbers at high scale with some simple guarantees.

    简介

    对于一个较大的订购业务场景,我们往往需要能够生成一个全局的唯一的订单号,如何在多个集群,多个节点高效生成唯一订单号?我们参考了Twitter的snowflake算法。

    snowflake最初由Twitter开发,用的scala,对于Twitter而言,必须满足每秒上万条消息的请求,并且每条消息能够分配一个全局唯一的ID,因此,ID生成服务要求必须满足高性能(>10K ids/s)、低延迟(<2ms)、高可用的特性,同时生成的ID还可以进行大致的排序,以方便客户端的排序。

    Snowflake满足了以上的需求。Snowflake生成的每一个ID都是64位的整型数,它的核心算法也比较简单高效,结构如下:

    • 41位的时间序列,精确到毫秒级,41位的长度可以使用69年。时间位还有一个很重要的作用是可以根据时间进行排序。

    • 10位的机器标识,10位的长度最多支持部署1024个节点。

    • 12位的计数序列号,序列号即一系列的自增id,可以支持同一节点同一毫秒生成多个ID序号,12位的计数序列号支持每个节点每毫秒产生4096个ID序号。

    • 最高位是符号位,始终为0,不可用。

    原生算法java实现


    /** 
    * 摘自网上某blog,记不得地址了。。 
    * @Project concurrency 
    * Created by wgy on 16/7/19. 
    */ 
    public class IdGen { 
    private long workerId; 
    private long datacenterId; 
    private long sequence = 0L; 
    private long twepoch = 1288834974657L; //Thu, 04 Nov 2010 01:42:54 GMT 
    private long workerIdBits = 5L; //节点ID长度 
    private long datacenterIdBits = 5L; //数据中心ID长度 
    private long maxWorkerId = -1L ^ (-1L << workerIdBits); //最大支持机器节点数0~31,一共32个 
    private long maxDatacenterId = -1L ^ (-1L << datacenterIdBits); //最大支持数据中心节点数0~31,一共32个 
    private long sequenceBits = 12L; //序列号12位 
    private long workerIdShift = sequenceBits; //机器节点左移12位 
    private long datacenterIdShift = sequenceBits + workerIdBits; //数据中心节点左移17位 
    private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits; //时间毫秒数左移22位 
    private long sequenceMask = -1L ^ (-1L << sequenceBits); //4095 
    private long lastTimestamp = -1L; 
    private static class IdGenHolder { 
    private static final IdGen instance = new IdGen(); 

    public static IdGen get(){ 
    return IdGenHolder.instance; 

    public IdGen() { 
    this(0L, 0L); 

    public IdGen(long workerId, long datacenterId) { 
    if (workerId > maxWorkerId || workerId < 0) { 
    throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0", maxWorkerId)); 

    if (datacenterId > maxDatacenterId || datacenterId < 0) { 
    throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0", maxDatacenterId)); 

    this.workerId = workerId; 
    this.datacenterId = datacenterId; 

    public synchronized long nextId() { 
    long timestamp = timeGen(); //获取当前毫秒数 
    //如果服务器时间有问题(时钟后退) 报错。 
    if (timestamp < lastTimestamp) { 
    throw new RuntimeException(String.format( 
    "Clock moved backwards. Refusing to generate id for %d milliseconds", lastTimestamp - timestamp)); 

    //如果上次生成时间和当前时间相同,在同一毫秒内 
    if (lastTimestamp == timestamp) { 
    //sequence自增,因为sequence只有12bit,所以和sequenceMask相与一下,去掉高位 
    sequence = (sequence + 1) & sequenceMask; 
    //判断是否溢出,也就是每毫秒内超过4095,当为4096时,与sequenceMask相与,sequence就等于0 
    if (sequence == 0) { 
    timestamp = tilNextMillis(lastTimestamp); //自旋等待到下一毫秒 

    } else { 
    sequence = 0L; //如果和上次生成时间不同,重置sequence,就是下一毫秒开始,sequence计数重新从0开始累加 

    lastTimestamp = timestamp; 
    // 最后按照规则拼出ID。 
    // 000000000000000000000000000000000000000000 00000 00000 000000000000 
    // time datacenterId workerId sequence 
    return ((timestamp - twepoch) << timestampLeftShift) | (datacenterId << datacenterIdShift) 
    | (workerId << workerIdShift) | sequence; 

    protected long tilNextMillis(long lastTimestamp) { 
    long timestamp = timeGen(); 
    while (timestamp <= lastTimestamp) { 
    timestamp = timeGen(); 

    return timestamp; 

    protected long timeGen() { 
    return System.currentTimeMillis(); 


    注释已经写的比较详细了,不做特别的说明。

    订购业务唯一订单号实现

    对于订购业务而言,虽然可以记录订单的创建时间,但是一般都需要带有显示的时间戳属性。因此,一个long型已无法满足实际的需求,将输出修改为String类型,前17位用于存储yyyyMMddHHMMssSSS格式的时间,后面用于记录所在集群,节点,以及自增量。


    import org.apache.commons.lang.time.DateFormatUtils;

    import java.net.InetAddress; 
    import java.net.UnknownHostException; 
    import java.util.Date;

    /** 
    * 与snowflake算法区别,返回字符串id,占用更多字节,但直观从id中看出生成时间 

    * @Project concurrency 
    * Created by wgy on 16/7/19. 
    */ 
    public enum IdGenerator {

    INSTANCE;
    
    private long workerId;   //用ip地址最后几个字节标示
    private long datacenterId = 0L; //可配置在properties中,启动时加载,此处默认先写成0
    private long sequence = 0L;
    private long workerIdBits = 8L; //节点ID长度
    private long datacenterIdBits = 2L; //数据中心ID长度,可根据时间情况设定位数
    private long sequenceBits = 12L; //序列号12位
    private long workerIdShift = sequenceBits; //机器节点左移12位
    private long datacenterIdShift = sequenceBits + workerIdBits; //数据中心节点左移14位
    private long sequenceMask = -1L ^ (-1L << sequenceBits); //4095
    private long lastTimestamp = -1L;
    
    IdGenerator(){
        workerId = 0x000000FF & getLastIP();
    }
    
    
    public synchronized String nextId() {
        long timestamp = timeGen(); //获取当前毫秒数
        //如果服务器时间有问题(时钟后退) 报错。
        if (timestamp < lastTimestamp) {
            throw new RuntimeException(String.format(
                    "Clock moved backwards.  Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
        }
        //如果上次生成时间和当前时间相同,在同一毫秒内
        if (lastTimestamp == timestamp) {
            //sequence自增,因为sequence只有12bit,所以和sequenceMask相与一下,去掉高位
            sequence = (sequence + 1) & sequenceMask;
            //判断是否溢出,也就是每毫秒内超过4095,当为4096时,与sequenceMask相与,sequence就等于0
            if (sequence == 0) {
                timestamp = tilNextMillis(lastTimestamp); //自旋等待到下一毫秒
            }
        } else {
            sequence = 0L; //如果和上次生成时间不同,重置sequence,就是下一毫秒开始,sequence计数重新从0开始累加
        }
        lastTimestamp = timestamp;
    
    
        long suffix = (datacenterId << datacenterIdShift) | (workerId << workerIdShift) | sequence;
    
        String datePrefix = DateFormatUtils.format(timestamp, "yyyyMMddHHMMssSSS");
    
        return datePrefix + suffix;
    }
    
    protected long tilNextMillis(long lastTimestamp) {
        long timestamp = timeGen();
        while (timestamp <= lastTimestamp) {
            timestamp = timeGen();
        }
        return timestamp;
    }
    
    protected long timeGen() {
        return System.currentTimeMillis();
    }
    
    private byte getLastIP(){
        byte lastip = 0;
        try{
            InetAddress ip = InetAddress.getLocalHost();
            byte[] ipByte = ip.getAddress();
            lastip = ipByte[ipByte.length - 1];
        } catch (UnknownHostException e) {
            e.printStackTrace();
        }
        return lastip;
    }
    

    }

    测试

    测试环境

    • macbook Pro 2.4 GHz Intel Core i5 4 GB 1600 MHz DDR3
    • 10个线程,每个线程生成5w个

      需2000ms左右,测试代码如下:

    测试代码


    @Test 
    public void testNextId() throws Exception { 
    final IdGenerator idg = IdGenerator.INSTANCE; 
    ExecutorService es = Executors.newFixedThreadPool(10); 
    final HashSet idSet = new HashSet(); 
    Collections.synchronizedCollection(idSet); 
    long start = System.currentTimeMillis(); 
    System.out.println(" start generate id *"); 
    for (int i = 0; i < 10; i++) 
    es.execute(new Runnable() { 
    public void run() { 
    for (int j = 0; j < 50000; j++) { 
    String id= idg.nextId(); 
    synchronized (idSet){ 
    idSet.add(id); 



    }); 
    es.shutdown(); 
    es.awaitTermination(10, TimeUnit.SECONDS); 
    long end = System.currentTimeMillis(); 
    System.out.println(" end generate id "); 
    System.out.println("* cost " + (end-start) + " ms!"); 
    Assert.assertEquals(10 * 50000, idSet.size()); 

    测试结果

    start generate id * 
    end generate id * 
    * cost 2091 ms!

  • 相关阅读:
    括号
    vue 框架原理
    Angular 1.x 框架原理
    ES5的数组方法
    js 对象细节
    《高性能网站建设进阶指南》笔记
    vue 运行时 + 编译器 vs. 只包含运行时
    vue-loader 细节
    vue 错误处理
    移动web touch事件
  • 原文地址:https://www.cnblogs.com/xuyuanjia/p/5888509.html
Copyright © 2011-2022 走看看