zoukankan      html  css  js  c++  java
  • codeforces#600(div2)

    A - Single Push

       题面意思,在给a数组取l - r加上k, 当a[i] - b[i] > 0 时,不成立,当出现0 - x - 0 - x的情况成立,当出现0 - x - y -0的情况不成立。那么其实只要在边界加上0,问题就变成了0 -x- 0活0 -0-0情况。

     1 #include <cstdio>
     2  
     3 int main(){
     4     int t, n, a[100002], b[100002], c[100002];
     5  
     6     scanf("%d", &t);
     7  
     8     for(int i = 0; i < t; i++){
     9         scanf("%d", &n);
    10  
    11         for(int j = 0; j < n; j++){
    12             scanf("%d", &a[j]);
    13         }
    14         for(int j = 0; j < n; j++){
    15             scanf("%d", &b[j]);
    16         }
    17         
    18         for(int j = 0; j < n; j++){
    19             c[j+1] = b[j] - a[j];
    20         }
    21         c[0] = 0;
    22         c[n + 1] = 0;
    23  
    24         int count = 0;
    25         for(int j = 0; j <= n; j++){
    26             if(c[j] < 0){
    27                 count = 3;
    28                 break;
    29             }
    30  
    31             if(c[j] != c[j + 1])
    32                 count++;
    33         }
    34         
    35  
    36         if(count <= 2){
    37             printf("YES
    ");
    38         }
    39         else{
    40             printf("NO
    ");
    41         }
    42     }
    43  
    44 }
    A

    B - Silly Mistake

       题面意思,把一个区间分别k区间,k个区间内满足,出现+x 必须出现-x,且同样的x不能出现在一个区间内出现俩次。

     1 #include <bits/stdc++.h>
     2  
     3 using namespace std;
     4  
     5 const int N = 1e5 + 10;
     6  
     7 int n;
     8 int T;
     9 int a[N];
    10 set<int> q;
    11 vector<int> ans;
    12 map<int, int> ma;
    13  
    14 int main()
    15 {
    16  
    17     
    18         ma.clear();
    19         ans.clear();
    20         q.clear();
    21         scanf("%d", &n);
    22         
    23         for (int i = 1; i <= n; i ++)
    24         scanf("%d", &a[i]);
    25     //    cout << a[1] << endl;
    26         bool flag = true;
    27         for (int i = 1; i <= n; i ++)
    28         {
    29         //    cout << a[i] << endl;
    30             if(a[i] < 0)
    31             {
    32         //        cout << a[i] << endl;
    33                 if(q.find(-a[i]) == q.end())
    34                 {
    35                     flag = false;
    36                     break;
    37                 }
    38                 else
    39                 {
    40                     q.erase(-a[i]);
    41                 //    cout << q.size() << endl;
    42                     if(q.size() == 0)
    43                     {
    44                         ans.push_back(i);
    45                         ma.clear();
    46                     }
    47                 }
    48             }
    49             else 
    50             {
    51                 if(ma[a[i]])
    52                 {
    53                     flag = false;
    54                     break;
    55                 }
    56                 else if(!ma[a[i]])
    57                 {
    58                     q.insert(a[i]);
    59                     ma[a[i]] = 1;
    60                 }
    61             }
    62         }
    63         if(q.size() > 0)
    64         {
    65             flag = false;
    66         }
    67         if(!flag )
    68         {
    69             puts("-1");
    70             return 0;
    71         }
    72         cout << ans.size() << endl;
    73         for (int i = 0; i < ans.size(); i ++)
    74         {
    75             if(i == 0)
    76             {
    77                 cout << ans[i] << " ";
    78             }
    79             else
    80             {
    81                 cout << ans[i] - ans[i - 1] << " ";
    82             }
    83         }
    84     
    85 }
    View Code

    C - Sweets Eating

        题面意思,吃糖, 每天最多吃m个糖,那么吃糖会有一个值d * a[i], d为第几天吃,让你求吃1~n个糖的值得最小值。那么对于k个糖来说,a[i]越大的糖必须越先吃,才能使值最小,对于前i个糖, 那么它比前i - 1吃的糖的值,多出a[i] + a[i - m] + a[i - 2 *m] .... a[i - k * m],用前缀和来维护。

     1 #include <bits/stdc++.h>
     2  
     3 using namespace std;
     4  
     5 const int N = 2e5 + 10;
     6 typedef long long ll;
     7  
     8 ll n, m;
     9 ll a[N];
    10 ll sum[N];
    11 ll ans[N];
    12  
    13 int main()
    14 {
    15     scanf("%lld%lld", &n, &m);
    16     for (int i = 1; i <= n; i ++)
    17     {
    18         scanf("%lld", &a[i]);
    19     }
    20     sort(a + 1, a + n + 1);
    21     for (int i = 1; i <= m; i ++)
    22      sum[i] = a[i];
    23     for (int i = m; i <= n; i ++)
    24     {
    25         sum[i] = sum[i - m] + a[i];
    26     }
    27     for (int i = 1; i <= n; i ++)
    28     {
    29         ans[i] = ans[i - 1];
    30         ans[i] += sum[i];
    31     }
    32     for (int i = 1; i <= n; i ++)
    33     printf("%lld ", ans[i]);
    34     
    35 }
    View Code

    D - Harmonious Graph

        体面意思,给你一个无向图,然后对于任意一个联通块的最大点数r和最小的点数l,都存在r - l + 1 == 联通块的个数,所以可以先跑个tarjan求出联通块的数量,并记录联通块的最大值和最小值,根据左端点排序,那么现在来合并联通块, 对于要合并的联通块,一定存在交集,Li 一顶小于Ri + 1,此时把联通块合在一个更新R。

      1 #include <bits/stdc++.h>
      2  
      3 using namespace std;
      4  
      5 const int N = 3e5 + 10;
      6 const int M = 6e5 + 10;
      7 const int INF = 0x3f3f3f3f;
      8  
      9  
     10  
     11 int n, m;
     12 int h[N], e[M], ne[M], idx;
     13 int dfn[N], low[N], stac[N], num;
     14 int top, st[N];
     15 int cnt;
     16 int c[N];
     17 int p[N]; 
     18 set<int> s[N];
     19 void add(int a, int b)
     20 {
     21     e[idx] = b;
     22     ne[idx] = h[a];
     23     h[a] = idx ++;
     24 }
     25 void tarjan(int u)
     26 {
     27     dfn[u] = low[u] = ++ num;
     28     stac[++ top] = u;
     29     st[u] = 1;
     30     for (int i = h[u]; ~i; i = ne[i])
     31     {
     32         int j = e[i];
     33         if(!dfn[j])
     34         {
     35             tarjan(j);
     36             low[u] = min(low[u], low[j]);
     37         }
     38         else if(st[j])
     39             low[u] = min(low[u], dfn[j]);
     40     }
     41     if(dfn[u] == low[u])
     42     {
     43         ++ cnt;
     44         int z;
     45         do{
     46             z = stac[top --];
     47             st[z] = 0;
     48             c[z] = cnt;
     49             p[z] = u;
     50              s[cnt].insert(z);
     51         }while(z != u);
     52     }
     53 }
     54  
     55 int find(int x)
     56 {
     57     if(x == p[x]) return x;
     58     return p[x] = find(p[x]); 
     59 } 
     60  
     61  
     62 int main()
     63 {
     64     memset(h, -1, sizeof(h));
     65     scanf("%d%d", &n, &m);
     66     for (int i = 1; i <= m; i ++)
     67     {
     68         int a, b;
     69         scanf("%d%d", &a, &b);
     70         add(a, b), add(b, a);
     71     }
     72  
     73     for (int i = 1; i <= n; i ++)
     74     {
     75         if(!dfn[i])
     76         tarjan(i);
     77     }
     78     for (int i = 1; i <= cnt; i ++)
     79      {
     80          p[i] = i;
     81      } 
     82     
     83     int res = 0;
     84     int now = -1;
     85     sort(s + 1, s + cnt + 1);
     86     for (int i = 1; i <= cnt; i ++)
     87     {
     88         int r = *(--s[i].end()), l = *s[i].begin();
     89         if(now == -1)
     90         {
     91             now = r;
     92         }
     93         else
     94         {
     95             if(l < now) res ++;
     96             now = max(r, now);
     97         }
     98         
     99     }
    100     printf("%d
    ", res);
    101 }
    View Code
  • 相关阅读:
    return
    debug_backtrace final catch
    Exponential Backoff
    2014 MapReduce
    Extract, Transform, Load
    Factorization of a 768-bit RSA modulus
    奇偶校验 汉明码 如果一条信息中包含更多用于纠错的位,且通过妥善安排这些纠错位使得不同的出错位产生不同的错误结果,那么我们就可以找出出错位了。 crc CRC 循环冗余校验
    An Explanation of the Deflate Algorithm
    通过极限手续定义正数的无理指数方幂
    算术根的存在唯一性
  • 原文地址:https://www.cnblogs.com/xwdzuishuai/p/11876444.html
Copyright © 2011-2022 走看看