zoukankan      html  css  js  c++  java
  • 十六、图的遍历(深度,广度)

    1. 深度优先搜索介绍

    图的深度优先搜索(Depth First Search),和树的先序遍历比较类似。

    它的思想:假设初始状态是图中所有顶点均未被访问,则从某个顶点v出发,首先访问该顶点,然后依次从它的各个未被访问的邻接点出发深度优先搜索遍历图,直至图中所有和v有路径相通的顶点都被访问到。 若此时尚有其他顶点未被访问到,则另选一个未被访问的顶点作起始点,重复上述过程,直至图中所有顶点都被访问到为止。

    显然,深度优先搜索是一个递归的过程。

    2. 深度优先搜索图解

    2.1 无向图的深度优先搜索

    下面以"无向图"为例,来对深度优先搜索进行演示。

    对上面的图G1进行深度优先遍历,从顶点A开始。

    第1步:访问A。 
    第2步:访问(A的邻接点)C。 
        在第1步访问A之后,接下来应该访问的是A的邻接点,即"C,D,F"中的一个。但在本文的实现中,顶点ABCDEFG是按照顺序存储,C在"D和F"的前面,因此,先访问C。 
    第3步:访问(C的邻接点)B。 
        在第2步访问C之后,接下来应该访问C的邻接点,即"B和D"中一个(A已经被访问过,就不算在内)。而由于B在D之前,先访问B。 
    第4步:访问(C的邻接点)D。 
        在第3步访问了C的邻接点B之后,B没有未被访问的邻接点;因此,返回到访问C的另一个邻接点D。 
    第5步:访问(A的邻接点)F。 
        前面已经访问了A,并且访问完了"A的邻接点B的所有邻接点(包括递归的邻接点在内)";因此,此时返回到访问A的另一个邻接点F。 
    第6步:访问(F的邻接点)G。 
    第7步:访问(G的邻接点)E。

    因此访问顺序是:A -> C -> B -> D -> F -> G -> E

    邻接矩阵:

    class StackX
    {
    private int maxSize ; private int[] st; private int top; public StackX(int s)
    { maxSize
    = s; st = new int[maxSize]; top = -1; } public void push(int j)
    { st[
    ++top] = j; } public int pop()
    {
    return st[top--]; } public int peek()
    {
    return st[top]; } public boolean isEmpty()
    {
    return (top==-1); } } class Vertex
    {
    public char label; public boolean wasVisited; public Vertex(char lab)
    { label
    = lab; wasVisited = false; } } class UDGraph
    {
    private final int MAX_VERTS = 20; private Vertex vertexList[]; private int adjMat[][]; private int nVerts; private StackX theStack; public UDGraph()
    {//无向图 vertexList
    = new Vertex[MAX_VERTS]; adjMat = new int[MAX_VERTS][MAX_VERTS]; nVerts = 0; for(int i=0;i<MAX_VERTS;i++) for(int j=0;j<MAX_VERTS;j++) adjMat[i][j] = 0; theStack = new StackX(MAX_VERTS); } public void addVertex(char lab)
    { vertexList[nVerts
    ++] = new Vertex(lab); } public void addEdge(int start,int end)
    { adjMat[start][end]
    = 1; adjMat[end][start] = 1;//无向图 } public void displayVertex(int v)
    { System.out.println(vertexList[v].label); }
    public void dfs()
    { vertexList[
    0].wasVisited = true; displayVertex(0); theStack.push(0); while(!theStack.isEmpty())
    {
    int v = getAdjUnvisitedVertex(theStack.peek()); if(v == -1) theStack.pop(); else
           { vertexList[v].wasVisited = true; displayVertex(v); theStack.push(v); } } for(int j=0;j<nVerts;j++) vertexList[j].wasVisited = false; } public int getAdjUnvisitedVertex(int v)
    {
    for(int j=0;j<nVerts;j++) if(adjMat[v][j]==1 && vertexList[j].wasVisited==false) return j; return -1; } } public class MatrixUDG_DFS
    {
    public static void main(String[] args)
    { UDGraph theGraph
    = new UDGraph(); theGraph.addVertex('A'); // 0 (start for mst) theGraph.addVertex('B'); // 1 theGraph.addVertex('C'); // 2 theGraph.addVertex('D'); // 3 theGraph.addVertex('E'); // 4 theGraph.addEdge(0, 1); // AB theGraph.addEdge(0, 2); // AC theGraph.addEdge(0, 3); // AD theGraph.addEdge(0, 4); // AE theGraph.addEdge(1, 2); // BC theGraph.addEdge(1, 3); // BD theGraph.addEdge(1, 4); // BE theGraph.addEdge(2, 3); // CD theGraph.addEdge(2, 4); // CE theGraph.addEdge(3, 4); // DE System.out.println("dbs"); theGraph.dfs(); } }

    邻接链表: 

    import java.util.ArrayList;
    class StackX
    {
    private int maxSize ; private Vertex[] st; private int top; public StackX(int s)
    { maxSize
    = s; st = new Vertex[maxSize]; top = -1; } public void push(Vertex vertex)
    { st[
    ++top] = vertex; } public Vertex pop()
    {
    return st[top--]; } public Vertex peek()
    {
    return st[top]; } public boolean isEmpty()
    {
    return (top==-1); } } class Vertex
    {
    public char label; public boolean wasVisited; public Edge firstEdge; public Vertex(char lab)
    {
    this.label = lab; this.wasVisited = false; firstEdge = null; } } class Edge
    {
    public int dest; public Edge nextEdge; public Edge(int dest)
    {
    this.dest= dest; nextEdge = null; } } class UDGraph
    {
    private final int MAX_VERTS = 20;//图的最大顶点数 private int nVerts = 0;//当前顶点数 private Vertex vertexList[];//顶点链表 private StackX theStack; private ArrayList<Vertex> dfs; public UDGraph()
    { vertexList
    = new Vertex[MAX_VERTS]; theStack = new StackX(20); dfs = new ArrayList<Vertex>(); } public void addVertex(Vertex vertex)
    {
    //vertex.indexId = nVerts; vertexList[nVerts++] = vertex; } public void addEdge(int start,int end)
    { Edge startEdge
    = new Edge(start); Edge endEdge = new Edge(end); Edge edge2 = vertexList[start].firstEdge; if(edge2==null)
    { vertexList[start].firstEdge
    = endEdge; }else
         { while(edge2.nextEdge!=null) edge2 = edge2.nextEdge; edge2.nextEdge = endEdge; } Edge edge3 = vertexList[end].firstEdge; if(edge3==null)
    { vertexList[end].firstEdge
    = startEdge; }else
    { while(edge3.nextEdge!=null) edge3 = edge3.nextEdge; edge3.nextEdge = startEdge; } } public void displayVertex(int v)
    { System.out.println(vertexList[v].label); }
    //返回顶点v的一个邻接点并且是未访问过的 public Vertex getAdjUnvisitedVertex(Vertex vertex)
    { Edge currentEdge
    = vertex.firstEdge; while(currentEdge != null )
         {
    if(!vertexList[currentEdge.dest].wasVisited) return vertexList[currentEdge.dest]; currentEdge = currentEdge.nextEdge; } return null; } public void dfs()
    { vertexList[
    0].wasVisited = true; dfs.add(vertexList[0]); theStack.push(vertexList[0]); Vertex vertex; while(!theStack.isEmpty())
         { vertex
    = getAdjUnvisitedVertex(theStack.peek()); if(vertex == null) theStack.pop(); else
           { vertex.wasVisited = true; dfs.add(vertex); theStack.push(vertex); } } //遍历完成,清楚所有访问标志位 for(int i=0;i<nVerts;i++) vertexList[i].wasVisited = false; } public void displayDFS()
      {
    for(int i=0;i<dfs.size();i++) System.out.print(dfs.get(i).label); System.out.println(""); } } public class ListUDG_DFS2
    {
    public static void main(String[] args)
    { UDGraph theGraph
    = new UDGraph(); theGraph.addVertex(new Vertex('A')); theGraph.addVertex(new Vertex('B')); theGraph.addVertex(new Vertex('C')); theGraph.addVertex(new Vertex('D')); theGraph.addVertex(new Vertex('E')); theGraph.addVertex(new Vertex('F')); theGraph.addVertex(new Vertex('G')); theGraph.addEdge(0, 1); //AB theGraph.addEdge(0, 2); //AC theGraph.addEdge(0, 3); //AD theGraph.addEdge(1, 4); //BE theGraph.addEdge(2, 5); //CF theGraph.addEdge(3, 4); //DE theGraph.addEdge(1, 6); //BG theGraph.addEdge(3, 5); System.out.println("dbs"); theGraph.dfs(); theGraph.displayDFS(); } }

    2.2 有向图的深度优先搜索

    下面以"有向图"为例,来对深度优先搜索进行演示。

    对上面的图G2进行深度优先遍历,从顶点A开始。

    第1步:访问A。 
    第2步:访问B。 
        在访问了A之后,接下来应该访问的是A的出边的另一个顶点,即顶点B。 
    第3步:访问C。 
        在访问了B之后,接下来应该访问的是B的出边的另一个顶点,即顶点C,E,F。在本文实现的图中,顶点ABCDEFG按照顺序存储,因此先访问C。 
    第4步:访问E。 
        接下来访问C的出边的另一个顶点,即顶点E。 
    第5步:访问D。 
        接下来访问E的出边的另一个顶点,即顶点B,D。顶点B已经被访问过,因此访问顶点D。 
    第6步:访问F。 
        接下应该回溯"访问A的出边的另一个顶点F"。 
    第7步:访问G。

    因此访问顺序是:A -> B -> C -> E -> D -> F -> G

    邻接矩阵:

    class StackX
    {
    private int maxSize ; private int[] st; private int top; public StackX(int s)
    { maxSize
    = s; st = new int[maxSize]; top = -1; } public void push(int j)
    { st[
    ++top] = j; } public int pop()
    {
    return st[top--]; } public int peek()
    {
    return st[top]; } public boolean isEmpty()
    {
    return (top==-1); } } class Vertex
    {
    public char label; public boolean wasVisited; public Vertex(char lab)
    { label
    = lab; wasVisited = false; } } class DGraph
    {
    private final int MAX_VERTS = 20; private Vertex vertexList[]; private int adjMat[][]; private int nVerts; private StackX theStack; public DGraph()
    { vertexList
    = new Vertex[MAX_VERTS]; adjMat = new int[MAX_VERTS][MAX_VERTS]; nVerts = 0; for(int i=0;i<MAX_VERTS;i++) for(int j=0;j<MAX_VERTS;j++) adjMat[i][j] = 0; theStack = new StackX(MAX_VERTS); } public void addVertex(char lab)
    { vertexList[nVerts
    ++] = new Vertex(lab); } public void addEdge(int start,int end)
    { adjMat[start][end]
    = 1; } public void displayVertex(int v)
    { System.out.println(vertexList[v].label); }
    public void dfs()
    { vertexList[
    0].wasVisited = true; displayVertex(0); theStack.push(0); while(!theStack.isEmpty())
    {
    int v = getAdjUnvisitedVertex(theStack.peek()); if(v == -1) theStack.pop(); else
    { vertexList[v].wasVisited = true; displayVertex(v); theStack.push(v); } } for(int j=0;j<nVerts;j++) vertexList[j].wasVisited = false; } public int getAdjUnvisitedVertex(int v)
    {
    for(int j=0;j<nVerts;j++) if(adjMat[v][j]==1 && vertexList[j].wasVisited==false) return j; return -1; } } public class MatrixDG_DFS
    {
    public static void main(String[] args)
    { DGraph theGraph
    = new DGraph(); theGraph.addVertex('A'); // 0 (start for mst) theGraph.addVertex('B'); // 1 theGraph.addVertex('C'); // 2 theGraph.addVertex('D'); // 3 theGraph.addVertex('E'); // 4 theGraph.addEdge(0, 1); // AB theGraph.addEdge(0, 2); // AC theGraph.addEdge(1, 3); // BD theGraph.addEdge(1, 4); // BE theGraph.addEdge(2, 3); // CD theGraph.addEdge(4, 2); System.out.println("dbs"); theGraph.dfs(); } }

    邻接链表 :

    import java.util.ArrayList;
    class StackX
    {
    private int maxSize ; private Vertex[] st; private int top; public StackX(int s)
    { maxSize
    = s; st = new Vertex[maxSize]; top = -1; } public void push(Vertex vertex)
    { st[
    ++top] = vertex; } public Vertex pop()
    {
    return st[top--]; } public Vertex peek()
    {
    return st[top]; } public boolean isEmpty()
    {
    return (top==-1); } } class Vertex
    {
    public char label; public boolean wasVisited; public Edge firstEdge; public Vertex(char lab)
    {
    this.label = lab; this.wasVisited = false; firstEdge = null; } } class Edge
    {
    public int dest; public Edge nextEdge; public Edge(int dest)
    {
    this.dest= dest; nextEdge = null; } } class DGraph
    {
    private final int MAX_VERTS = 20;//图的最大顶点数 private int nVerts = 0;//当前顶点数 private Vertex vertexList[];//顶点链表 private StackX theStack; private ArrayList<Vertex> dfs; public DGraph()
    { vertexList
    = new Vertex[MAX_VERTS]; theStack = new StackX(20); dfs = new ArrayList<Vertex>(); } public void addVertex(Vertex vertex)
    {
    //vertex.indexId = nVerts; vertexList[nVerts++] = vertex; } public void addEdge(int start,int end)
    { Edge endEdge
    = new Edge(end); Edge currentEdge = vertexList[start].firstEdge; if(currentEdge==null)
    { vertexList[start].firstEdge
    = endEdge; }else
         { while(currentEdge.nextEdge!=null) currentEdge = currentEdge.nextEdge; currentEdge.nextEdge = endEdge; } } public void displayVertex(int v)
    { System.out.println(vertexList[v].label); }
    //返回顶点v的一个邻接点并且是未访问过的 public Vertex getAdjUnvisitedVertex(Vertex vertex)
    { Edge currentEdge
    = vertex.firstEdge; while(currentEdge != null )
    {
    if(!vertexList[currentEdge.dest].wasVisited) return vertexList[currentEdge.dest]; currentEdge = currentEdge.nextEdge; } return null; } public void dfs()
    { vertexList[
    0].wasVisited = true; dfs.add(vertexList[0]); theStack.push(vertexList[0]); Vertex vertex; while(!theStack.isEmpty())
    { vertex
    = getAdjUnvisitedVertex(theStack.peek()); if(vertex == null) theStack.pop(); else
           { vertex.wasVisited = true; dfs.add(vertex); theStack.push(vertex); } } //遍历完成,清楚所有访问标志位 for(int i=0;i<nVerts;i++) vertexList[i].wasVisited = false; } public void displayDFS()
    {
    for(int i=0;i<dfs.size();i++) System.out.print(dfs.get(i).label); System.out.println(""); } } public class ListDG_DFS
    {
    public static void main(String[] args)
    { DGraph theGraph
    = new DGraph(); theGraph.addVertex(new Vertex('A')); theGraph.addVertex(new Vertex('B')); theGraph.addVertex(new Vertex('C')); theGraph.addVertex(new Vertex('D')); theGraph.addVertex(new Vertex('E')); theGraph.addVertex(new Vertex('F')); theGraph.addVertex(new Vertex('G')); theGraph.addEdge(0, 1); //AB theGraph.addEdge(0, 2); //AC theGraph.addEdge(0, 3); //AD theGraph.addEdge(1, 4); //BE theGraph.addEdge(2, 5); //CF theGraph.addEdge(3, 4); //DE theGraph.addEdge(1, 6); //BG theGraph.addEdge(3, 5); //DF System.out.println("dbs"); theGraph.dfs(); theGraph.displayDFS(); } }

    广度优先搜索的图文介绍

    1. 广度优先搜索介绍

    广度优先搜索算法(Breadth First Search),又称为"宽度优先搜索"或"横向优先搜索",简称BFS。

    它的思想是:从图中某顶点v出发,在访问了v之后依次访问v的各个未曾访问过的邻接点,然后分别从这些邻接点出发依次访问它们的邻接点,并使得“先被访问的顶点的邻接点先于后被访问的顶点的邻接点被访问,直至图中所有已被访问的顶点的邻接点都被访问到。如果此时图中尚有顶点未被访问,则需要另选一个未曾被访问过的顶点作为新的起始点,重复上述过程,直至图中所有顶点都被访问到为止。

    换句话说,广度优先搜索遍历图的过程是以v为起点,由近至远,依次访问和v有路径相通且路径长度为1,2...的顶点。

    2. 广度优先搜索图解

    2.1 无向图的广度优先搜索

    下面以"无向图"为例,来对广度优先搜索进行演示。还是以上面的图G1为例进行说明。

    第1步:访问A。 
    第2步:依次访问C,D,F。 
        在访问了A之后,接下来访问A的邻接点。前面已经说过,在本文实现中,顶点ABCDEFG按照顺序存储的,C在"D和F"的前面,因此,先访问C。再访问完C之后,再依次访问D,F。 
    第3步:依次访问B,G。 
        在第2步访问完C,D,F之后,再依次访问它们的邻接点。首先访问C的邻接点B,再访问F的邻接点G。 
    第4步:访问E。 
        在第3步访问完B,G之后,再依次访问它们的邻接点。只有G有邻接点E,因此访问G的邻接点E。

    因此访问顺序是:A -> C -> D -> F -> B -> G -> E

    邻接矩阵:

    class Queue
    {
       private final  int maxSize;
       private int[] queArray;
       private int front;
       private int rear;
    
       public Queue(int s)  
       {
          maxSize = s;
          queArray = new int[maxSize];
          front = rear = 0;
        }
    
       public boolean insert(int j) 
       {
          if(isFull())     
             return false;
          else
          {
                queArray[rear] = j;
                rear=(rear+1)%maxSize;
                 return true;
           }        
       }
    
       public int remove()   
       {
          if(isEmpty())
              return -1;
          else
          {
              int value = queArray[front];
              front = (front+1)%maxSize;
               return value;
           }
       }
    
       public int peekFront() 
       {
          if(!isEmpty())
              return queArray[front];
          else
              return -1;
       }
    
       public boolean isEmpty()  
       {
           return (front==rear);
       }
    
       public boolean isFull()  
       {
           return (front==(rear+1)%maxSize);
       }
    }  
    
    
    class Vertex
    {
    public char label; public boolean wasVisited; public Vertex(char lab)
    { label
    = lab; wasVisited = false; } } class UDGraph
    {
    private final int MAX_VERTS = 20; private Vertex vertexList[]; private int adjMat[][]; private int nVerts; private Queue theQueue; public UDGraph()
    { vertexList
    = new Vertex[MAX_VERTS]; adjMat = new int[MAX_VERTS][MAX_VERTS]; nVerts = 0; for(int i=0;i<MAX_VERTS;i++) for(int j=0;j<MAX_VERTS;j++) adjMat[i][j] = 0; theQueue = new Queue(MAX_VERTS); } public void addVertex(char lab)
    { vertexList[nVerts
    ++] = new Vertex(lab); } public void addEdge(int start,int end)
    { adjMat[start][end]
    = 1; adjMat[end][start] = 1;//无向图 } public void displayVertex(int v){ System.out.println(vertexList[v].label); } public void bfs(){ vertexList[0].wasVisited = true; displayVertex(0); theQueue.insert(0); int v2; while(!theQueue.isEmpty())
    {
    int v1 = theQueue.remove(); while((v2 = getAdjUnvisitedVertex(v1)) != -1)
    { vertexList[v2].wasVisited
    = true; displayVertex(v2); theQueue.insert(v2); } } for(int j=0;j<nVerts;j++) vertexList[j].wasVisited = false; } public int getAdjUnvisitedVertex(int v)
    {
    for(int j=0;j<nVerts;j++) if(adjMat[v][j]==1 && vertexList[j].wasVisited==false) return j; return -1; } } public class MatrixUDG_BFS
    {
    public static void main(String[] args)
    { UDGraph theGraph
    = new UDGraph(); theGraph.addVertex('A'); // 0 (start for mst) theGraph.addVertex('B'); // 1 theGraph.addVertex('C'); // 2 theGraph.addVertex('D'); // 3 theGraph.addVertex('E'); // 4 theGraph.addEdge(0, 1); // AB theGraph.addEdge(0, 2); // AC theGraph.addEdge(1, 3); // BD theGraph.addEdge(1, 4); // BE theGraph.addEdge(2, 3); // CD theGraph.addEdge(4, 2); theGraph.bfs(); System.out.println(); } }

    邻接链表:

    import java.util.ArrayList;
    class Queue
    {
       private final  int maxSize;
       private Vertex[] queArray;
       private int front;
       private int rear;
    
       public Queue(int s)  
       {
          maxSize = s;
          queArray = new Vertex[maxSize];
          front = rear = 0;
        }
    
       public boolean insert(Vertex vertex) 
       {
          if(isFull())     
             return false;
          else
          {
                queArray[rear] = vertex;
                rear=(rear+1)%maxSize;
                 return true;
           }        
       }
    
       public Vertex remove()   
       {
          if(isEmpty())
              return null;
          else
          {
              Vertex vertex = queArray[front];
              front = (front+1)%maxSize;
               return vertex;
           }
       }
    
       public Vertex peekFront() 
       {
           if(!isEmpty())
               return queArray[front];
           else
               return null;
       }
    
       public boolean isEmpty()  
       {
           return (front==rear);
       }
    
       public boolean isFull()  
       {
           return (front==(rear+1)%maxSize);
       }
    }  
    
    class Vertex
    {
    public char label; public boolean wasVisited; public Edge firstEdge; public Vertex(char lab)
    {
    this.label = lab; this.wasVisited = false; firstEdge = null; } } class Edge
    {
    public int dest; public Edge nextEdge; public Edge(int dest)
    {
    this.dest= dest; nextEdge = null; } } class UDGraph
    {
    private final int MAX_VERTS = 20;//图的最大顶点数 private int nVerts = 0;//当前顶点数 private Vertex vertexList[];//顶点链表 private Queue theQueue; private ArrayList<Vertex> bfsList; public UDGraph()
    { vertexList
    = new Vertex[MAX_VERTS]; theQueue = new Queue(MAX_VERTS); bfsList = new ArrayList<Vertex>(); } public void addVertex(Vertex vertex)
    {
    //vertex.indexId = nVerts; vertexList[nVerts++] = vertex; } public void addEdge(int start,int end)
    { Edge startEdge
    = new Edge(start); Edge endEdge = new Edge(end); Edge edge2 = vertexList[start].firstEdge; if(edge2==null)
    { vertexList[start].firstEdge
    = endEdge; }else
         { while(edge2.nextEdge!=null) edge2 = edge2.nextEdge; edge2.nextEdge = endEdge; } Edge edge3 = vertexList[end].firstEdge; if(edge3==null)
       { vertexList[end].firstEdge
    = startEdge; }else
    { while(edge3.nextEdge!=null) edge3 = edge3.nextEdge; edge3.nextEdge = startEdge; } } public void displayVertex(int v)
    { System.out.println(vertexList[v].label); }
    //返回顶点v的一个邻接点并且是未访问过的 public Vertex getAdjUnvisitedVertex(Vertex vertex)
    { Edge currentEdge
    = vertex.firstEdge; while(currentEdge != null )
    {
    if(!vertexList[currentEdge.dest].wasVisited) return vertexList[currentEdge.dest]; currentEdge = currentEdge.nextEdge; } return null; } public void bfs()
    { vertexList[
    0].wasVisited = true; bfsList.add(vertexList[0]); theQueue.insert(vertexList[0]); Vertex vertex2; while(!theQueue.isEmpty())
    { Vertex vertex1
    = theQueue.remove(); while((vertex2 = getAdjUnvisitedVertex(vertex1)) != null)
    { vertex2.wasVisited
    = true; bfsList.add(vertex2); theQueue.insert(vertex2); } } //遍历完成,清楚所有访问标志位 for(int j=0;j<nVerts;j++) vertexList[j].wasVisited = false; } public void displayBFS()
    {
    for(int i=0;i<bfsList.size();i++) System.out.print(bfsList.get(i).label); System.out.println(""); } } public class ListUDG_BFS
    {
    public static void main(String[] args)
    { UDGraph theGraph
    = new UDGraph(); theGraph.addVertex(new Vertex('A')); theGraph.addVertex(new Vertex('B')); theGraph.addVertex(new Vertex('C')); theGraph.addVertex(new Vertex('D')); theGraph.addVertex(new Vertex('E')); theGraph.addVertex(new Vertex('F')); theGraph.addVertex(new Vertex('G')); theGraph.addEdge(0, 1);//AB theGraph.addEdge(0, 3);//AD theGraph.addEdge(1, 4);//BE theGraph.addEdge(2, 5);//CF theGraph.addEdge(3, 4);//DE theGraph.addEdge(1, 6);//BG theGraph.addEdge(3, 5);//DF System.out.println("bfs"); theGraph.bfs(); theGraph.displayBFS(); } }

    2.2 有向图的广度优先搜索

    下面以"有向图"为例,来对广度优先搜索进行演示。还是以上面的图G2为例进行说明。

    第1步:访问A。 
    第2步:访问B。 
    第3步:依次访问C,E,F。 
        在访问了B之后,接下来访问B的出边的另一个顶点,即C,E,F。前面已经说过,在本文实现中,顶点ABCDEFG按照顺序存储的,因此会先访问C,再依次访问E,F。 
    第4步:依次访问D,G。 
        在访问完C,E,F之后,再依次访问它们的出边的另一个顶点。还是按照C,E,F的顺序访问,C的已经全部访问过了,那么就只剩下E,F;先访问E的邻接点D,再访问F的邻接点G。

    因此访问顺序是:A -> B -> C -> E -> F -> D -> G

    class Queue
    {
       private final  int maxSize;
       private int[] queArray;
       private int front;
       private int rear;
    
       public Queue(int s)  
       {
          maxSize = s;
          queArray = new int[maxSize];
          front = rear = 0;
        }
    
       public boolean insert(int j) 
       {
          if(isFull())     
             return false;
          else
          {
                queArray[rear] = j;
                rear=(rear+1)%maxSize;
                 return true;
           }        
       }
    
       public int remove()   
       {
          if(isEmpty())
              return -1;
          else
          {
              int value = queArray[front];
              front = (front+1)%maxSize;
               return value;
           }
       }
    
       public int peekFront() 
       {
           if(!isEmpty())
               return queArray[front];
           else
               return -1;
       }
    
       public boolean isEmpty()  
       {
           return (front==rear);
       }
    
       public boolean isFull()  
       {
           return (front==(rear+1)%maxSize);
       }
    } 
    
    
    class Vertex
    {
    public char label; public boolean wasVisited; public Vertex(char lab)
    { label
    = lab; wasVisited = false; } } class DGraph
    {
    private final int MAX_VERTS = 20; private Vertex vertexList[]; private int adjMat[][]; private int nVerts; private Queue theQueue; public DGraph()
    { vertexList
    = new Vertex[MAX_VERTS]; adjMat = new int[MAX_VERTS][MAX_VERTS]; nVerts = 0; for(int i=0;i<MAX_VERTS;i++) for(int j=0;j<MAX_VERTS;j++) adjMat[i][j] = 0; theQueue = new Queue(MAX_VERTS); } public void addVertex(char lab)
    { vertexList[nVerts
    ++] = new Vertex(lab); } public void addEdge(int start,int end)
    { adjMat[start][end]
    = 1; } public void displayVertex(int v)
    { System.out.println(vertexList[v].label); }
    public void bfs()
    { vertexList[
    0].wasVisited = true; displayVertex(0); theQueue.insert(0); int v2; while(!theQueue.isEmpty())
    {
    int v1 = theQueue.remove(); while((v2 = getAdjUnvisitedVertex(v1)) != -1)
    { vertexList[v2].wasVisited
    = true; displayVertex(v2); theQueue.insert(v2); } } for(int j=0;j<nVerts;j++) vertexList[j].wasVisited = false; }
    public int getAdjUnvisitedVertex(int v)
    {
    for(int j=0;j<nVerts;j++) if(adjMat[v][j]==1 && vertexList[j].wasVisited==false) return j; return -1; } } public class MatrixDG_BFS
    {
    public static void main(String[] args)
    { DGraph theGraph
    = new DGraph(); theGraph.addVertex('A'); // 0 (start for mst) theGraph.addVertex('B'); // 1 theGraph.addVertex('C'); // 2 theGraph.addVertex('D'); // 3 theGraph.addVertex('E'); // 4 theGraph.addEdge(0, 1); // AB theGraph.addEdge(0, 2); // AC theGraph.addEdge(1, 3); // BD theGraph.addEdge(1, 4); // BE theGraph.addEdge(2, 3); // CD theGraph.addEdge(4, 2); theGraph.bfs(); System.out.println(); } }

    邻接链表:

    import java.util.ArrayList;
    class Queue
    {
       private final  int maxSize;
       private Vertex[] queArray;
       private int front;
       private int rear;
    
       public Queue(int s)  
       {
          maxSize = s;
          queArray = new Vertex[maxSize];
          front = rear = 0;
        }
    
       public boolean insert(Vertex vertex) 
       {
          if(isFull())     
             return false;
          else
          {
                queArray[rear] = vertex;
                rear=(rear+1)%maxSize;
                 return true;
           }        
       }
    
       public Vertex remove()   
       {
          if(isEmpty())
              return null;
          else
          {
              Vertex vertex = queArray[front];
              front = (front+1)%maxSize;
               return vertex;
           }
       }
    
       public Vertex peekFront() 
       {
           if(!isEmpty())
               return queArray[front];
           else
               return null;
       }
    
       public boolean isEmpty()  
       {
           return (front==rear);
       }
    
       public boolean isFull()  
       {
           return (front==(rear+1)%maxSize);
       }
    }  
    
    class Vertex
    {
    public char label; public boolean wasVisited; public Edge firstEdge; public Vertex(char lab)
    {
    this.label = lab; this.wasVisited = false; firstEdge = null; } } class Edge
    {
    public int dest; public Edge nextEdge; public Edge(int dest)
    {
    this.dest= dest; nextEdge = null; } } class DGraph
    {
    private final int MAX_VERTS = 20;//图的最大顶点数 private int nVerts = 0;//当前顶点数 private Vertex vertexList[];//顶点链表 private Queue theQueue; private ArrayList<Vertex> bfsList; public DGraph()
    { vertexList
    = new Vertex[MAX_VERTS]; theQueue = new Queue(MAX_VERTS); bfsList = new ArrayList<Vertex>(); } public void addVertex(Vertex vertex)
    {
    //vertex.indexId = nVerts; vertexList[nVerts++] = vertex; } public void addEdge(int start,int end)
    { Edge endEdge
    = new Edge(end); Edge currentEdge = vertexList[start].firstEdge; if(currentEdge==null)
    { vertexList[start].firstEdge
    = endEdge; }else
    { while(currentEdge.nextEdge!=null) currentEdge = currentEdge.nextEdge; currentEdge.nextEdge = endEdge; } } public void displayVertex(int v)
    { System.out.println(vertexList[v].label); }
    //返回顶点v的一个邻接点并且是未访问过的 public Vertex getAdjUnvisitedVertex(Vertex vertex)
    { Edge currentEdge
    = vertex.firstEdge; while(currentEdge != null )
    {
    if(!vertexList[currentEdge.dest].wasVisited) return vertexList[currentEdge.dest]; currentEdge = currentEdge.nextEdge; } return null; } public void bfs()
    { vertexList[
    0].wasVisited = true; bfsList.add(vertexList[0]); theQueue.insert(vertexList[0]); Vertex vertex2; while(!theQueue.isEmpty())
    { Vertex vertex1
    = theQueue.remove(); while((vertex2 = getAdjUnvisitedVertex(vertex1)) != null)
    { vertex2.wasVisited
    = true; bfsList.add(vertex2); theQueue.insert(vertex2); } } //遍历完成,清楚所有访问标志位 for(int j=0;j<nVerts;j++) vertexList[j].wasVisited = false; } public void displayBFS()
    {
    for(int i=0;i<bfsList.size();i++) System.out.print(bfsList.get(i).label); System.out.println(""); } } public class ListDG_BFS
    {
    public static void main(String[] args)
      { DGraph theGraph
    = new DGraph(); theGraph.addVertex(new Vertex('A')); theGraph.addVertex(new Vertex('B')); theGraph.addVertex(new Vertex('C')); theGraph.addVertex(new Vertex('D')); theGraph.addVertex(new Vertex('E')); theGraph.addVertex(new Vertex('F')); theGraph.addVertex(new Vertex('G')); theGraph.addEdge(0, 1);//AB theGraph.addEdge(0, 2);//AC theGraph.addEdge(0, 3);//AD theGraph.addEdge(1, 4);//BE theGraph.addEdge(2, 5);//CF theGraph.addEdge(3, 4);//DE theGraph.addEdge(1, 6);//BG theGraph.addEdge(3, 5);//DF System.out.println("bfs"); theGraph.bfs(); theGraph.displayBFS(); } }
  • 相关阅读:
    WPS表格:统计有效性(即:设为下拉选择框) 及 统计总数
    windows11桌面开始菜单移到左边
    批量将 大量文件的文件名 更为 提前准备好的文件名(一行一个)
    用微信电脑版视频号进行直播(可播放本地视频、窗口画面)
    华为电脑管家、华为手机助手官方下载地址(手机助手app显示空白,可通过重装pc版助手解决)
    《新三国》1080P(89集全)下载
    idea 使用常见问题汇总
    npm切换源
    springboot 与 springcloud 版本匹配
    Nginx学习笔记
  • 原文地址:https://www.cnblogs.com/xxlong/p/5021377.html
Copyright © 2011-2022 走看看