tensorflow中的一些操作和numpy中的很像,下面列出几个比较常见的操作
import tensorflow as tf #定义三行四列的零矩阵 tf.zeros([3,4]) #定义两行三列的全1矩阵 tf.ones([2,3]) #定义常量 tensor = tf.constant([1,2,3,4,5,6,7]) #定义两行三列全为-1的矩阵 tensor = tf.constant(-1.0.shape=[2,3]) #[10 11 12] tf.linspace(10.0,12.0,3,name="linespace") tf.range(start,end,delta)
#构造两行三列的均值为mean,方差为stddev的符合正态分布的矩阵 norm = tf.random_normal([2,3],mean=-1,stddev=4)
#洗牌操作 c = tf.constant([[1,2],[3,4],[5,6]]) shuff = tf.random_shuffle(c)
sess = tf.Session()
print(sess.run(norm))
print(sess.run(shuff))
#赋个初始值 state = tf.Variable(0) #初始值加1 new_value = tf.add(state, tf.constant(1)) #更新 update = tf.assign(state, new_value) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) print(sess.run(state)) for _ in range(3): sess.run(update) print(sess.run(state))
#numpy向tensorflow转换 import numpy as np a = np.zeros((3,3)) ta = tf.convert_to_tensor(a) with tf.Session() as sess: print(sess.run(ta))
#tensorflow中的placeholder input1 = tf.placeholder(tf.float32) input2 = tf.placeholder(tf.float32) output = tf.multiply(input1,input2) with tf.Session() as sess: print(sess.run([output],feed_dict={input1:[7.],input2:[2.]}))