使用mnist数据集进行神经网络的构建
import numpy as np import tensorflow as tf import matplotlib.pyplot as plt from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('data/', one_hot=True)
这个神经网络共有三层。输入层有n个1*784的矩阵,第一层有256个神经元,第二层有128个神经元,输出层是一个十分类的结果。对w1、b1、w2、b2以及输出层的参数进行随机初始化
# NETWORK TOPOLOGIES n_input = 784 n_hidden_1 = 256 n_hidden_2 = 128 n_classes = 10 # INPUTS AND OUTPUTS x = tf.placeholder("float", [None, n_input]) y = tf.placeholder("float", [None, n_classes]) # NETWORK PARAMETERS stddev = 0.1 weights = { 'w1': tf.Variable(tf.random_normal([n_input, n_hidden_1], stddev=stddev)), 'w2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2], stddev=stddev)), 'out': tf.Variable(tf.random_normal([n_hidden_2, n_classes], stddev=stddev)) } biases = { 'b1': tf.Variable(tf.random_normal([n_hidden_1])), 'b2': tf.Variable(tf.random_normal([n_hidden_2])), 'out': tf.Variable(tf.random_normal([n_classes])) } print ("NETWORK READY")
开始进行前向传播
def multilayer_perceptron(_X, _weights, _biases): layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(_X, _weights['w1']), _biases['b1'])) layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, _weights['w2']), _biases['b2'])) return (tf.matmul(layer_2, _weights['out']) + _biases['out'])
用前向传播函数算出预测值;算出损失值(此处使用交叉熵);构造梯度下降最优构造器;算出精度;
# PREDICTION pred = multilayer_perceptron(x, weights, biases) # LOSS AND OPTIMIZER cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y)) optm = tf.train.GradientDescentOptimizer(learning_rate=0.001).minimize(cost) corr = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1)) accr = tf.reduce_mean(tf.cast(corr, "float")) # INITIALIZER init = tf.global_variables_initializer() print ("FUNCTIONS READY")
定义迭代次数;使用以上定义好的神经网络函数
training_epochs = 20 batch_size = 100 display_step = 4 # LAUNCH THE GRAPH sess = tf.Session() sess.run(init) # OPTIMIZE for epoch in range(training_epochs): avg_cost = 0. total_batch = int(mnist.train.num_examples/batch_size) # ITERATION for i in range(total_batch): batch_xs, batch_ys = mnist.train.next_batch(batch_size) feeds = {x: batch_xs, y: batch_ys} sess.run(optm, feed_dict=feeds) avg_cost += sess.run(cost, feed_dict=feeds) avg_cost = avg_cost / total_batch # DISPLAY if (epoch+1) % display_step == 0: print ("Epoch: %03d/%03d cost: %.9f" % (epoch, training_epochs, avg_cost)) feeds = {x: batch_xs, y: batch_ys} train_acc = sess.run(accr, feed_dict=feeds) print ("TRAIN ACCURACY: %.3f" % (train_acc)) feeds = {x: mnist.test.images, y: mnist.test.labels} test_acc = sess.run(accr, feed_dict=feeds) print ("TEST ACCURACY: %.3f" % (test_acc)) print ("OPTIMIZATION FINISHED")