zoukankan      html  css  js  c++  java
  • tensorflow学习笔记六----------神经网络

    使用mnist数据集进行神经网络的构建

    import numpy as np
    import tensorflow as tf
    import matplotlib.pyplot as plt
    from tensorflow.examples.tutorials.mnist import input_data
    mnist = input_data.read_data_sets('data/', one_hot=True)

    这个神经网络共有三层。输入层有n个1*784的矩阵,第一层有256个神经元,第二层有128个神经元,输出层是一个十分类的结果。对w1、b1、w2、b2以及输出层的参数进行随机初始化

    # NETWORK TOPOLOGIES
    n_input    = 784 
    n_hidden_1 = 256 
    n_hidden_2 = 128 
    n_classes  = 10  
    
    # INPUTS AND OUTPUTS
    x = tf.placeholder("float", [None, n_input])
    y = tf.placeholder("float", [None, n_classes])
        
    # NETWORK PARAMETERS
    stddev = 0.1
    weights = {
        'w1': tf.Variable(tf.random_normal([n_input, n_hidden_1], stddev=stddev)),
        'w2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2], stddev=stddev)),
        'out': tf.Variable(tf.random_normal([n_hidden_2, n_classes], stddev=stddev))
    }
    biases = {
        'b1': tf.Variable(tf.random_normal([n_hidden_1])),
        'b2': tf.Variable(tf.random_normal([n_hidden_2])),
        'out': tf.Variable(tf.random_normal([n_classes]))
    }
    print ("NETWORK READY")

    开始进行前向传播

    def multilayer_perceptron(_X, _weights, _biases):
        layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(_X, _weights['w1']), _biases['b1'])) 
        layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, _weights['w2']), _biases['b2']))
        return (tf.matmul(layer_2, _weights['out']) + _biases['out'])

    用前向传播函数算出预测值;算出损失值(此处使用交叉熵);构造梯度下降最优构造器;算出精度;

    # PREDICTION
    pred = multilayer_perceptron(x, weights, biases)
    
    # LOSS AND OPTIMIZER
    cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y)) 
    optm = tf.train.GradientDescentOptimizer(learning_rate=0.001).minimize(cost) 
    corr = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))    
    accr = tf.reduce_mean(tf.cast(corr, "float"))
    
    # INITIALIZER
    init = tf.global_variables_initializer()
    print ("FUNCTIONS READY")

    定义迭代次数;使用以上定义好的神经网络函数

    training_epochs = 20
    batch_size      = 100
    display_step    = 4
    # LAUNCH THE GRAPH
    sess = tf.Session()
    sess.run(init)
    # OPTIMIZE
    for epoch in range(training_epochs):
        avg_cost = 0.
        total_batch = int(mnist.train.num_examples/batch_size)
        # ITERATION
        for i in range(total_batch):
            batch_xs, batch_ys = mnist.train.next_batch(batch_size)
            feeds = {x: batch_xs, y: batch_ys}
            sess.run(optm, feed_dict=feeds)
            avg_cost += sess.run(cost, feed_dict=feeds)
        avg_cost = avg_cost / total_batch
        # DISPLAY
        if (epoch+1) % display_step == 0:
            print ("Epoch: %03d/%03d cost: %.9f" % (epoch, training_epochs, avg_cost))
            feeds = {x: batch_xs, y: batch_ys}
            train_acc = sess.run(accr, feed_dict=feeds)
            print ("TRAIN ACCURACY: %.3f" % (train_acc))
            feeds = {x: mnist.test.images, y: mnist.test.labels}
            test_acc = sess.run(accr, feed_dict=feeds)
            print ("TEST ACCURACY: %.3f" % (test_acc))
    print ("OPTIMIZATION FINISHED")
  • 相关阅读:
    数据结构-包含min函数的栈
    数据结构-顺时针打印矩阵
    数据结构-二叉树的镜像
    数据结构-树的子结构
    数据结构-合并两个排序的链表
    数据结构-反转链表
    数据结构-链表中倒数第K个节点
    数据结构-调整数组顺序使奇数位于偶数前面
    数据结构-在O(1)时间删除链表节点
    数据结构-打印1到最大的n位数
  • 原文地址:https://www.cnblogs.com/xxp17457741/p/9477400.html
Copyright © 2011-2022 走看看