- 题意: 树上查询两点之间的距离和两点路径上的第k个点
- 思路: 先用树剖求lca,并记录下每个点到根的距离来回答第一个询问.
对于第二个询问,求每个点到其lca的距离然后暴力向上跳,若deep[x]-deep[t]>=k-1
,则在左边上跳(k-1)个点,否则在右边上跳deep[x]+deep[y]-2*deep[t]-k+1
个点
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <string>
#include <stdlib.h>
#include <vector>
#include <queue>
#include <cmath>
#include <stack>
#include <map>
#include <set>
#define ll long long
#define FOR(i,l,r) for(int i = l ; i <= r ;++i )
#define inf 1<<30
#define eps (1e-9)
#define ALL(T) T.begin(),T.end()
#define lson(i) i<<1
#define rson(i) (i<<1|1)
using namespace std;
typedef pair<int,int> pii;
const int maxn = 100010;
struct Edge{
int to,next,w;
}edge[maxn*2];
int head[maxn],tot;
int top[maxn],fa[maxn],deep[maxn],num[maxn],p[maxn],fp[maxn],son[maxn],val[maxn];
int pos;
void addedge(int u,int v,int w){
edge[++tot].to = v;
edge[tot].next = head[u];
edge[tot].w = w;
head[u] = tot;
}
void init(){
memset(head,0,sizeof head);
memset(son,-1,sizeof son);
tot = 0;
pos = 1;
}
void dfs1(int u,int pre,int d){
deep[u] = d;
fa[u] = pre;
num[u] = 1;
for(int i=head[u];i;i=edge[i].next){
int v = edge[i].to;
if(v!=pre){
val[v] = val[u] + edge[i].w;
dfs1(v,u,d+1);
num[u] += num[v];
if(son[u]==-1 || num[v] > num[son[u]]){
son[u] = v;
}
}
}
}
void dfs2(int u,int sp){
top[u] = sp;
p[u] = pos++;
fp[p[u]] = u;
if(son[u]== -1) return ;
dfs2(son[u],sp);
for(int i=head[u];i;i=edge[i].next){
int v = edge[i].to;
if(v!=son[u] && v!=fa[u])
dfs2(v,v);
}
}
int query(int x,int y){
while(top[x]!=top[y]){
if(deep[top[x]]>deep[top[y]]){
x = fa[top[x]];
}else{
y = fa[top[y]];
}
}
return deep[x] < deep[y] ? x:y;
}
int findf(int u,int k){
while (k)
{
k--;
u = fa[u];
}
return u;
}
int n,m,x,y,v;
char op[10];
int main(){
int cas;
scanf("%d",&cas);
while(cas--){
scanf("%d",&n);
init();
for(int i=1;i<n;++i){
scanf("%d%d%d",&x,&y,&v);
addedge(x,y,v);
addedge(y,x,v);
}
dfs1(1,0,0);
dfs2(1,1);
for(int i=1;i<=m;++i){
}
while(scanf("%s",op)){
if(op[1]=='I'){
scanf("%d%d",&x,&y);
int t = query(x,y);
printf("%d
",val[x]+val[y]-2*val[t]);
}else if(op[1]=='T'){
scanf("%d%d%d",&x,&y,&v);
int t = query(x,y);
int r ;
if(deep[x]-deep[t]>=v-1){
r= findf(x,v-1);
}else{
r= findf(y,deep[y]-v+deep[x]-2*deep[t]+1);
}
printf("%d
",r);
}else if(op[1]=='O'){
break;
}
}
}
return 0;
}
树链剖分求lca
- 两个点跳到同一链上(更深的点跳到他所在链链顶的父亲)
- 深度更小的点为初始两个点的lca
感性理解下